When orbiting hotter stars, hot Jupiters are often highly inclined relative to their host star equator planes. By contrast, hot Jupiters orbiting cooler stars are more aligned. Prior attempts to explain this correlation between stellar obliquity and effective temperature have proven problematic. We show how resonance locking—the coupling of the planet's orbit to a stellar gravity mode (g-mode)...
Exoplanet atmospheres with imprints from their history open an important avenue to trace the origin and evolution of planets. With high-dispersion spectroscopy, we can resolve atomic and molecular spectral features into unique forests of lines that serve as fingerprints for identifying different species and probing structures and dynamics of exoplanet atmospheres. I will talk about high-resolut...
The theory of core-collapse supernova (CCSN) has evolved significantly in the past few years with the help of long term 3D simulations. In this talk, I will present many new scientific results based on the large set of CCSN simulations calculated by the code Fornax, focusing on the important role of three dimensional effects. I will talk about theoretical observables such as explosion energy, ...
Unveiling the true nature of Dark Matter (DM), which manifests itself only through gravity, is one of the principal quests in physics. Leading candidates for DM are weakly interacting massive particles (WIMPs) or ultralight bosons (axions), at opposite extremes in mass scales, that have been postulated by competing theories to solve deficiencies in the Standard Model of particle physics. Wherea...
Turbulence features ubiquitously in the interstellar medium, especially in the high-redshift Universe. Photoionization models with turbulent ISM density fields can predict nebular emission lines more realistically than the former uniform density/pressure photoionization models. In this talk, we will briefly introduce a turbulent photoionization model grid created by the cutting-edge 3D Monte Ca...