Most galaxies comparable to or larger than the mass of the Milky Way host hot, X-ray emitting atmospheres and accreting supermassive black holes. Hot atmospheres and radio jets and lobes are the ingredients of radio-mechanical active galactic nucleus (AGN) feedback. At least half of the most massive early-type galaxies harbour multi-phase filamentary gas, which appears to result from the therm...
The utilization of Pulse Profile modeling techniques could simultaneously provide measurements for Neutron star Mass Radius and offer insights into their hotspot distribution. Presently, these methodologies rely on meta models of the equation of state (EOS) and employ pure geometrical cap overlapping techniques to align with observational data. This presentation aims to showcase our recent resu...
When orbiting hotter stars, hot Jupiters are often highly inclined relative to their host star equator planes. By contrast, hot Jupiters orbiting cooler stars are more aligned. Prior attempts to explain this correlation between stellar obliquity and effective temperature have proven problematic. We show how resonance locking—the coupling of the planet's orbit to a stellar gravity mode (g-mode)...
Short-period super-Earths and sub-Neptunes are the most abundant type of planets. Their origin is key to understanding planet formation and the evolution of protoplanetary disks. Recent observations found that, contrary to mature systems, young planetary systems appear to be dominated by near-resonant configurations, suggesting a rich history of resonance capture followed by secular dynamical i...
Galaxies are complex systems influenced by numerous factors. Despite extensive research, we cannot yet explain the diverse properties of nearby galaxies. Gas accretion, environments, galaxy merging, and supermassive black hole (SMBH) feedback play pivotal roles in galaxy evolution. In this talk, I will present an overview of my recent and current research. My work entails a comprehensive compar...