To date, there are more than 5000 exoplanets discovered in our neighborhood, showcasing a remarkable diversity in planetary system architectures. Unraveling the planet formation process, as well as the origin of this diversity, requires a comprehensive understanding of their birth sites - the dusty and gas-rich disks orbiting around young stars. ALMA’s unprecedented spatial resolution and sens...
The advent of the James Webb Space Telescope (JWST) has brought the study of early galaxy formation to a new level. Shortly after it began its scientific operation, JWST revealed a large number of candidate galaxies at redshift (z) greater than 11 when the universe was less than ~420 million years old, some of which could even be at z ~ 20 (age of the universe ~180 million years). This was comp...
In the galactic ecosystem, the circumgalactic medium (CGM) is a massive baryon reservoir orchestrating baryonic inflows and outflows, shaping galaxy formation and evolution. Of profound significance is the quenching of cosmic star formation since cosmic noon, pivotal in unraveling present-day galaxy characteristics, yet its driving force remains uncertain. Characterizing and modeling the CGM em...
The origin of the low-ionization nuclear emission-line region (LINER) prevalent in local galaxies and its relationship with supermassive black holes are debated for decades. We preform a comprehensive evaluation of traditional photoionization models against the circumnuclear ionized gas in M81, for which recent CAHA/PPAK integral-field spectroscopic observations reveal a LINER characteristic ou...
As a prevalent and widely distributed component of galactic gas, neutral atomic hydrogen (HI) and Carbon lines (CO, CII) play a crucial role in comprehending various astrophysical processes, including star formation histories, galaxy interactions, and the tracing of cosmic large-scale structures. However, the sensitivity limitations of telescopes pose challenges to directly measuring line signa...