The recent breakthrough in the detection of gravitational waves (GWs) from merging black hole (BH) and neutron star (NS) binaries by advanced LIGO/Virgo has generated renewed interest in understanding the formation mechanisms of merging compact binaries, from the evolution of massive stellar binaries and triples in the galactic fields, dynamical interactions in dense star clusters to binary mer...
In 2013, the IceCube Neutrino Observatory at the South Pole discovered an extragalactic high-energy diffuse neutrino flux, opening a new era for neutrino astronomy. However, the origin of this flux remains mostly unresolved to date. Identification of astrophysical neutrino sources would be the smoking evidence to unveil the century-long puzzle on origin of cosmic rays. Being neutral and interac...
Study of stellar objects embedded in AGN accretion disks around massive Black Holes have been motivated by i) the disk of stars that formed in-situ in the galactic center; ii) the redshift independence of metallicity in AGN disks, which also suggest in-situ pollution; iii) massive LIGO-Virgo gravitational wave sources that possibly evolved in a gas rich environment, and iv) quasi-periodic erupt...
Motivated by its applications to the interior dynamics of planets, the problem of thermal convection in rapidly rotating, self-gravitating fluid bodies has been widely modeled in spheres or spherical shells, which implicitly neglects the flattening effect due to the centrifugal force. However, recent Juno and Cassini missions have measured the gravitational fields of Jupiter and Saturn with ext...
Galaxies are not isolated islands in the Universe. Across the cosmic time, they assemble and evolve while frequently interacting with the ambient cosmic gas, namely the circum- and inter-galactic media (CGM/IGM), which belongs to the large-scale structure named the cosmic web. However, specifically what roles this large-scale environment plays in galaxy formation remains as a key open question ...