Dark matter — established via various cosmological and astronomical observations — is a significant constituent of our Universe and remains one of the most outstanding mysteries of modern physics. The mass range of potential dark matter candidates covers more than 30 orders of magnitude. In the past, researchers have primarily focused on searching for GeV-TeV dark matter (WIMP) via nuclear re...
The distance-inclination degeneracy limits gravitational-wave parameter estimation of compact binary mergers. Such a degeneracy can be partially broken by including higher-order modes or precession when modeling the waveform of a binary that contains a black hole. But what about binary neutron stars, for which these effects are suppressed? In this talk, I will introduce a new parameterization o...
As an important tracer of star formations and chemical enrichment in galaxies, HII regions play a fundamental role in our understanding of galaxy evolution. To infer the physical conditions of HII regions in galaxies, many diagnostic methods based on the emission-line spectra of the ionized gas have been proposed. Meanwhile, people have constructed theoretical models to describe the ionization ...
Evolutions of stars, black hole accretion as well as interactions between stars and black holes play an important role in various astrophysical systems, such as supernova, X-ray binaries, AGNs as well as various transient phenomena. I will discuss some long standing issues related to massive star and black hole systems. Then I will describe some examples on how we can make progress on some of ...
I will present my work on identifying faint X-ray sources in multiple Galactic globular clusters (GCs). These X-ray sources could be close binaries hosting compact stellar remnants (white dwarfs, black holes, and neutron stars) and magnetically active binaries. For some GCs, we incorporate deep radio imaging data in our analyses to reveal potential candidates of millisecond pulsars and accretin...