Astronomy today is fundamentally different than it was even just a decade ago. Our increasing ability to collect a large amount of data from ever more powerful instruments has enabled many new opportunities. However, such an opportunity also comes with new challenges. The bottleneck stems from the fact that most astronomical observations are inherently high dimension — from “imaging” the Uni...
In this talk I will discuss promising new opportunities in gravitational wave astronomy as the sensitivity of ground-based gravitational wave detector improves, and when the space-borne detector(s) start their operation. I will use stellar-mass binary black holes, neutron stars and the so-called extreme mass-ratio inspirals as examples of these exciting developments. In the last part of the ta...
The origin of stellar-mass black hole mergers discovered through gravitational waves is being widely debated. Mergers in the disks of active galactic nuclei (AGN) represent a promising source of origin. By modelling the evolution of compact objects in AGN disks, we found that several observational signatures in gravitational wave data are only explained by the AGN channel. Beyond gravitational ...
Gravitational wave has become a new window to explore our universe. Among many events detected so far, GW170817 was the first binary neutron star gravitational wave event joint with electromagnetic observations, which revolutionized our understanding of neutron star physics and the origin of kilonova. However, due to a limited detector sensitivity at the high frequency around kHz, we did not ob...
In 1997, the EIT telescope aboard the SOHO satellite (from NASA and ESA) discovered a global-scale wave phenomenon associated with solar flares, which was then called “EIT waves” or “solar tsunamis”. The physical nature of “EIT waves” has been debated for decades. The speaker will try to provide an overview of the related research, including recent progress.BIOPeng-Fei Chen is a solar phy...