New Methods for Cosmic Large-Scale Structure Analysis

Xiao-Dong Li (李霄栋), from SYSU

Mar 12, 2020 @ Tsinghua

LSS Cosmology

Correlation function $\xi(r)$: BAO bump

Data

Correlation Function, Power Spectrum

Cosmological Parameters

Is that all?

"俺觉得,世界应当 更精彩"

I expect more things

Is that all?

解决小尺度是关键

small scale is important

Outline

Tomographic AP

Topology

Machine learning

I. Tomographic AP Test

The Alcock-Paczynski test

Alcock & Paczynski, Nature, 1979

We use cosmology to calculate 3d shape

$$\Delta r_{\parallel} = \underbrace{\frac{c}{H(z)}}_{\Delta z} \Delta z$$

$$\Delta r_{\perp} = (1+z)D_{A}(z)\Delta \theta$$

$$H(z) = \underbrace{H_{0}}_{Q_{m}} \underbrace{\Omega_{m}a^{-3} + (1-\Omega_{m})a^{-3(1+w)}}_{D_{A}(z)}$$

$$D_{A}(z) = \frac{c}{1+z}r(z) = \frac{c}{1+z}\int_{0}^{z}\frac{dz'}{H(z')}$$

In case of using wrong cosmology....

Shape distortion due to wrong H, D_A :

OF How can we find isotropic objects/structures in the Universe?

A- Large-scale structure statistics!

Credit: Sloan Digital Sky Sunyey.

• The bat can identify an object by the sound of the echo.

The bat's brain converts the received sound into 3d positions.

If you see this, something wrong with your brain

AP is very simple (easy modeling) happens on all scales (including non-linear!)

But life is not so simple...

Difficulty: RSD! (no good solution for many years)

100

50

-50

-100

-100

 π (h⁻¹ Mpc)

Anisotropy from peculiar motion

Difficulty: Contamination from RSD

Strong (5-10 times larger than AP)

Non-linear, very headache

I want him disappears

Distinguish AP from RSD?

Li et al, 2014, ApJ, with Prof. Changbom Park @ KIAS

AP in Ω_m =0.26 ACDM

I found a hardworking slave postdoc

Well, thank you

RSD: evolves less with redshift

AP: significant redshift evolution

Statistical Quantification via 2PCF

Li, Park, Sabiu, et al. 2015, MNRAS

$$\xi_{\Delta s}(\mu) \equiv \int_{s_{\min}}^{s_{\max}} \xi(s,\mu) \, ds.$$
$$\hat{\xi}_{\Delta s}(\mu) \equiv \frac{\xi_{\Delta s}(\mu)}{\int_{0}^{\mu_{\max}} \xi_{\Delta s}(\mu) \, d\mu}.$$

Integration scale 6-40 Mpc/h

 μ = cos θ θ = angle between galaxy pairs and LOS

Statistical Quantification via 2PCF

Li, Park, Sabiu, et al. 2015, MNRAS

Test on N-body

 μ = cos θ θ = angle between galaxy pairs and LOS

Statistical Quantification via 2PCF

Li, Park, Sabiu, et al. 2015, MNRAS

Test on N-body

 μ = cos θ θ = angle between galaxy pairs and LOS

Application to SDSS DR12

Li, Park, Sabiu, et al. 2016, ApJ

1/4 sky, z = 0.15-0.7, **1.3 million galaxies DR12** 有种的咱就来真的! A Real fight

Systematics in real data

1. RSD

2. Galaxy bias (affect clustering)

3. Angular variation

4. Radial variation (incomplete LF coverage)

5. Fiber collision (high-density regions under-sampled)

Horizon Run Simulations

HR3 (Kim et al. 2012) (10.815 *h*⁻¹ Gpc)³ 7120³ particles

HR4 (Kim et al. 2015) (3.15*h*⁻¹ Gpc)³ 6300³ particles

Mocks from HR3/HR4

4 North / 8 South mocks can be made from an all-sky sample.

 \ast 108 North / 216 South / 72 North+South mocks made from twenty-seven z<0.7, all-sky lightcones of HR3 PSB halos

• Large number of mocks, suitable for estimating covariance.

* 4 North / 8 South mocks made from one $r{<}3150~{\rm Mpc}/h,$ all-sky lightcone of HR4 mock galaxies

• Faithful to real observational data; suitable for accurate modeling of systematic effects

Evolution in 6 bins

Li, Park, Sabiu, et al. 2016, ApJ

Best-fit = minimal redshift evolution after systematics correction

Tomographic Analysis

Tomographic AP applied to SDSS DF

Li, Park, Sabiu, et al. 2016, ApJ

Tighter than SNIa Consistent with everything. Combining all:

> $\Omega_{\rm m} = 0.301 \pm 0.006$ w = -1.054 ± 0.025

AP reduces the error of Planck+BAO+SNIa+H0 by **30-40%**!

Dynamical dark energy

Li, Sabiu, Park, et al. 2018, ApJ

 $w = w_0 + w_a z / (1+z)$

consistent with cc

AP reduces the contour area by **100%!**

Robustness check

Robustness check

Comological Interpretation

*H*⁰ constraints (1801.07403)

张雪 理论所博后

Comological Interpretation

*H*₀ constraints (1801.07403) Non-parametric DE constraint (1902.09794)

张震宇 大四

100% improvement on w(z)

Comological Interpretation

 H_0 constraints (1801.07403) Non-parametric DE constraint (1902.09794) More parameters (1903.04757)

Parameter	ACDM extension		wCDM extension	
	Planck+BAO	+AP	Planck+BAO	+AP
$\Omega_k \ldots \ldots$	$-0.0002\substack{+0.0041\\-0.0040}$	$0.0004^{+0.0042}_{-0.0039}$	$-0.0010\substack{+0.0066\\-0.0061}$	$-0.0015^{+0.0042}_{-0.0044}$
$\sum m_{\nu}[\mathrm{eV}]$	< 0.181	< 0.141	< 0.295	< 0.243
<i>N</i> _{eff}	$2.97_{-0.34}^{+0.34}$	$3.07^{+0.33}_{-0.33}$	$2.95^{+0.38}_{-0.37}$	$2.96^{+0.37}_{-0.35}$
$dn_s/d\ln k$	$-0.0023^{+0.0132}_{-0.0138}$	$-0.0025^{+0.0133}_{-0.0136}$	$-0.0024^{+0.0134}_{-0.0136}$	$-0.0025^{+0.0132}_{-0.0139}$
<i>r</i>	< 0.115	< 0.121	< 0.113	< 0.111

张雪 理论所博后

I know you have questions. Let me explain more.
Q: Why results so godd !?

A: By reducing RSD, we can use small-scale clustering.

Actually, method also works for Fourier space Luo (罗孝麟), Wu, Li, 2019, ApJ

Tomographic AP can work at

k= 1 - 1.8

(test using BigMD Nbody)

Q: But we all know RSD is evolving?!

Q: But we all know RSD is evolving?!

A: We are not saying "RSD is invariant".

We should say, "in many models AP evolves larger than RSD,

these models can be ruled out by our method".

Also, we do correct RSDs via simulations. We are even

planning a model-dependent correction.

Q: "Small evolution of RSD" is just "a phenomenon you find".

You don't have solid proof.

A: 1) On non-linear scales, N-body is a kind of "the best theory"

A: 1) On non-linear scales, N-body is a kind of "the best theory"

2) If you only rely on analytical approach, you will miss many things

VS

- **A:** 1) On non-linear scales, N-body is a kind of "the best theory"
 - 2) If you only rely on analytical approach, you will miss many things
- 3) Simulation-based approach is the future trend (emulation, machine learning, ...)

A: 1) On non-linear scales, N-body is a kind of "the best theory"

2) If you only rely on analytical approach, you will miss many things

3) Simulation-based approach is the future trend (emulation, machine learning, ...)

4) Actually, we are trying to "prove it" using CLPT ...

Convolution Lagrangian Perturbation Theory for Biased Tracers

Jordan Carlson^{1*}, Beth Reid², and Martin White^{1,2} ¹ Department of Physics, University of California, Berkeley, CA 94720, USA ² Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA 20 November 2012 **ABSTRACT** We present a new formulation of Lagran, dictions of the real- and redshift-space oc halos. Our formulation involves a non-pe

CLPT paper arXiv:1209.0780

We present a new formulation of Lagrangian perturbation theory which allows accurate predictions of the real- and redshift-space correlation functions of the mass field and dark matter halos. Our formulation involves a non-perturbative resummation of Lagrangian perturbation

王小马 大四

Preparations for future data (preliminary)

	ΕŴ	C	11	Г
	70	Ň		
E.d		y		
S.				
	127	14 · · ·		

Project	Site/	Launch	FoV	R _{EE80}	Num pixels	Area	Wavelength	Num	Spect
	orbit	/ор	deg ²	"	10 9	deg ²	nm	Filters	
CSS-OS	LEO	~2022	1.1	0.15	2.5	17500	<mark>255</mark> —1000	≥7	yes
Euclid	L2	2020	0.56 0.55	>0.2 pix lmt	0.6 0.07	15000	550—920 1000—2000	1 3	no yes
WFIRST	L2	2025	0.28	>0.2	0.3	~2000	927—2000	4	yes
LSST	Chile	2022	9.6	~0.7	3.2	18000	320-1050	6	no

	Space Station	HST/ACS WFC	Euclid	WFIRST
R _{EE50}	0.1"	0.06"	0.13"	0.12"
R _{EE80}	0.15"	0.12"	~0.23"	~0.24"

Best image quality among surveys!

R_{EE80}: radius encircling 80% energy

By Zhan Hu

DESI Forecast

张雪 理论所博后

If we can control systematcis, then Planck+DESI BAO/AP is10 times better than Planck+ DESI BAO

Challenges

Big Data (expensive mocks)

Big Covmat (many, redshfit bins)

Systematic error becomes critical ! (worry about the cosmological dependence of the RSDs)

Fast mocks using COLA algorithm (COLA paper: arXiv:1301.0322)

boxsize = 100 Mpc/h

2LPT

COLA, 10 timesteps

N-body, 2000 timesteps

CLOA strategy = Lage-scale 2LPT + small-scale Nbody

RSD estimation using COLA

马庆麟 大三

Accuracy of COLA seems to be good

COLA in lightcone

(Using L-PICOLA code: arXiv:1506.03737)

马庆麟 大三

3000³ particles, ~100 cores, finished in ~ weeks

we will need 10³ runs in single/multi - cosmologies for covmat/systematics

II. Topology

	<i>c</i> .::		:.:: :::::	
		:	• •	80
·				

Jaime Forero Romero

Nina Amenta et. 1998

β-SKELETON: Connection based on empty space Feng et al., MNRAS, 2018

β<1 β=1 β>1

$rightarrow \beta$ web of SDSS galaxies

Length of connections

Feng et al., MNRAS, 2018

Two peaks

Length of connections

Feng et al., MNRAS, 2018

Robust major peak

In-progress works

Topology

Entropy of cosmic web (Garcia-Alvarado et al., MNRAS submitted)

Relationship with other methods using Machine Learning (Suarez-Perez et al., in progress)

In-progress works

Topology

Entropy of cosmic web (Garcia-Alvarado et al., MNRAS submitted)

Relationship with other methods using Machine Learning (Suarez-Perez et al., in progress)

Cosmology (more difficult)

Under investigation...

$rightarrow \beta$ web of SDSS galaxies

Feng et al., MNRAS, 2018

Clustering z=0.0 ____ z=0.3 ____ z=0.6 ---z=0.9 ----No RSD 6 1 2 5 7 8 3 4 $L (h^{-1}Mpc)$

Just mention two more methods ...
Topology as standard ruler

Changbom & Young-Rae, 0905.2268

Stephen & Changbom, to appear

Mark weighted Correlation Function

Yang et al., appear soon

weighting all objects by $\pmb{\rho}^{\alpha}$

杨以钊 大三

Mark weighted Correlation Function

Yang et al., appear soon

weighting all objects by ${\pmb \rho}^{\alpha}$

杨以钊 大三

α=1: focus on clusters/filaments

α= -1: voids

Mark weighted Correlation Function

Yang et al., appear soon

weighting all objects by ${\pmb \rho}^{\alpha}$

杨以钊 大三

Combining information from different weights

Adding RSDs

This peak is insensitive to everything. Cannot be used to do cosmology.

III. Machine Learning Cosmology

For me so easy

Motivation

The Extremely Complicated LSS

Motivation

The Extremely Complicated LSS

Connectionism (联结主义)

 "When connecting together a large number of simple units, the system becomes intellegent."

Connectionism (联结主义)

 "When connecting together a large number of simple units, the system becomes intellegent."

• Example: Our Brain

Connectionism (联结主义)

Our brain is just a collection of naieve things

• Inputs are just pixels

• Inputs are just pixels

• Based on that, more sophisticated features constructed. See hidden layers.

• Inputs are just pixels

- Based on that, more sophisticated features constructed. See hidden layers.
 - First layer identifies edges based on brightness contrast;
 - Second layer identifies angles and boundaries based on edges;
 - Third layer groups together angles and boundaries and can identify some **objects**

Pan et al., arXiv:1908.10590

COSMOLOGICAL PARAMETER ESTIMATION FROM LARGE-SCALE STRUCTURE DEEP LEARNING

Shuyang Pan, Miaoxin Liu,¹ Jaime Forero-Romero,² Cristiano G. Sabiu,³ Zhigang Li,⁴ Haitao Miao,¹ and Xiao-Dong Li ^{*1}

潘书洋 大二

计算机太牛了

We propose a light-weight deep convolutional neural network to estimate the cosmological parameters from simulated 3-dimensional dark matter distributions with high accuracy. The training set is based on 465 realizations of a cubic box size of 256 h^{-1} Mpc on a side, sampled with 128³ particles interpolated over a cubic grid of 128³ voxels. These volumes have cosmological parameters varying within the flat Λ CDM parameter space of 0.16 $\leq \Omega_m \leq 0.46$ and $2.0 \leq 10^9 A_s \leq 2.3$. The neural network takes as an input cubes with 32³ voxels and has three convolution layers, three dense layers, together with some batch normalization and pooling layers. We test the error-tolerance abilities of the neural network, including the robustness against smoothing, masking, random noise, global variation, rotation, reflection and simulation resolution. In the final predictions from the network we find a 2.5% bias on the primordial amplitude σ_8 that can not easily be resolved by continued training. We correct this bias to obtain unprecedented accuracy in the cosmological parameter estimation with statistical uncertainties of $\delta\Omega_m=0.0015$ and $\delta\sigma_8=0.0029$. The uncertainty on Ω_m is 6 (and 4) times smaller than the Planck (and Planck+external) constraints presented in Ade et al. (2016).

刘淼昕 大二

Fore more reference: Ravanbakhsh et al. 2017, Mathuriya et al. 2018

Training Set

500 cosmologies

• 128 ³ particles, (256 h ⁻¹ Mpc) ³ box,

- $0.16 \leq \Omega_m \leq 0.46$
- $2.0 \le 10^{9} \text{ A}_{s} \le 2.3$

Distribution in $\Omega_{\rm m}$ - σ_8 space

From $\Omega_{\rm m}$ -A_s to $\Omega_{\rm m}$ - σ_8 a degeneracy happens

Our Architecture

B.N

Features

$$(\Omega_{\rm m} - \sigma_8) = 0.26, 0.72$$

Features

$$(\Omega_{\rm m} - \sigma_8) = 0.16, 0.43$$

Training (converge after 200 epochs)

Understanding the Universe in ~1 week

Controlling Bais

We add a regression to fit the bias and correct it

Cosmological Constraint

Precision

(256 Mpc/h)³ + CNN yields to

$δΩ_m = 0.0015, δσ_8 = 0.0029$

Accuracy of Ω_m 6 times better than Planck

Precision

^aDefined as $\Delta y/y$ (y stands for Ω_m , σ_8)

Machine outperforms 2pCF

Robustness tests on samples having 32³ voxels.

Robustness tests on samples having 32³ voxels.

3% smoothing or 10% global variation : \sim 2 σ shift in central values, \sim 100% enlarged errors

Robustness tests on samples having 32³ voxels.

3% smoothing or 10% global variation : \sim 2 σ shift in central values, \sim 100% enlarged errors

1% smoothing, 5% global variation, 10% change in the simulation's resolution: 1σ shift in central values,

Robustness tests on samples having 32³ voxels.

3% smoothing or 10% global variation : \sim 2 σ shift in central values, \sim 100% enlarged errors

1% smoothing, 5% global variation, 10% change in the simulation's resolution: 1σ shift in central values,

1 or 4 3 voxels removal, 5% or 8% random noise, rotation & relfection: no change

Next Step

ML on realistic SDSS mock surveys

(a few more words)

再罗嗦两句

LSS Reconstruction using Machine Learning

吴子泳 大三

潘书洋 大二

张震宇 大四

LSS Reconstruction using Machine Learning

Just like image transforming...

Non-trival mapping between fields
IC & Velocity Reconstruction Very preliminary trials

Based on z=0 density field...

 $\Omega_m = 0.205$

Very preliminary trials

 $\Omega_m = 0.290$

15.848

- 7.685

- 3.727

-1.807

-0.876

-0.424

- 0.205

0.099

175 200

 $\Omega_m = 0.315$

Very preliminary trials

Groud truth 15.848 - 7.685 - 3.727 -1.807 -0.876 -0.424 - 0.205 0.099

 $\Omega_m = 0.445$ 15.848 original field original field predicted field predicted field - 7.685 - 3.727 -1.807 -0.876 -0.424 -0.205 0.099 -1000 -500 ρ vx, vy

 $\Omega_m = 0.320$

Conclusion & Future

Theory

Observation

Some features

- e.g. z-evolv
 - of AP, RSD

- e.g. z-evolv
 - of AP, RSD

Machine Learning

Machine Learning

Machine Learning

Application to future surveys all methods need a lot of mocks!

- 1. systematics correction
 - (~10³ runs, multi-cosmologies)
- 2. covariance matrix
 - (~10³ runs, single cosmology)
- 3. machine learning training/test samples
 - (~10³-10⁴ runs, multi-cosmologies)

Sun Yat-Sen University Welcome you!

天文系目前有 教授、副教授 22 人, 专职研究员、博士后 19 人

- Positions
 - Professor/Associate Professor
 - Researcher
 - Postdoc
- Research Fields
 - TianQin (GW)
 - Astronomy (Cosmology and galaxies, Milky way, stellars, planets, high-energy physics, observational astronomy,...)
 - Theortical physics
 - Quantum physics

错过别后悔哦

