

Weimin Yuan

esa

Einstein Probe Exploring the dynamic x-ray universe

National Astro. Observatories Chinese Academy of Sciences

MPI

On behalf of EP consortium

Variables & transients in X-ray sky

X/γ -ray wide-field monitors

Current X-ray wide-field monitors in orbit

Swift (NASA 2004-)

- GRB mission
- BAT: 14-300keV, FoV ~ 2 sr
- 2 GRB + 0.5 transients per week

MAXI on ISS (JAXA 2009-)

- 0.8 Transients per week (mostly Galactic)
- Monitoring large number of sources hourly/daily

New high-energy transients & science questions

BH tidal disruption event

Demography of Black holes How matter falls onto BH? How jets form?

Quasi-periodic eruption

EMRI as GW sources?

High-redshift GRB When first stars formed? metal enrichment in early universe Next generation X-ray monitors needed to see deeper/further High cadence

EM counterpart of neutrino events How particles Accelerated?

rt of ts

Supernova shock breakout Supernova physics & progenitors

EM counterpart of gravitational waves

What are EM counterparts? How compact objects merge?

Requirements for next generation X-ray ASM

Higher sensitivity by 1-2 orders of mag. than those in orbits Large FoV (~ 1 str) Soft X-ray (0.5keV) How? A: X-ray focusing imaging

How X-ray focusing imaging improves sensitivity

X-ray focusing imaging: Wolter-I optics

X-ray reflection by grazing incidence Higher reflectivity for lower-E X-rays

Frist: Einstein Observatory (NASA) 1978-1981

- 100 x more sensitive than Uhuru
- Revolutionzied X-ray astronomy

- high sensitivity
- small FoV (< 1-2 deg)</p>

XMM-Newton, Chandra, NuSTAR, eROSITA...

Lobster-eye micro-pore optics (MPO) for X-ray focusing

lobster-eye micro-pore optics for X-ray focusing

Ideal optics for X-ray wide-field monitors

Wide FoV (uniform imaging) True imaging Arcmin angular resolution Optimised for soft X-rays Light weight

- First proposed by R. Angel (1979)
- Studied by a number of groups for many years, e.g. Univ. Leicester, NASA, NAOC/CAS, ...

Wilkins et al. (1989) ; Fraser et al. (1992); Kaaret (1992)

200 400 600 800 1000 1200 1400 1600 1800 2000

FWHM = 4.5 arcmin

1400

1600

2000

Einstein Probe (EP) mission

HXMT-Insight (2017-) CAS's 1st X-ray observatory

Einstein Pro-

EP science goal

X-ray all-sky monitoring to discover & characterise highenergy transients, and to monitor variability of X-ray sources, at sensitivity > 1 order of magnitude better than current ones

2010: X-ray ASM (CSS)
2012: EP proposal
Adoption: 2017-12
Now Phase C (performance validation)
Launch: planned 2022-12 (new 2023)
Lifetime: 3 years (goal 5 yr)
International collaboration: ESA & MPE

Main science objectives

Systematic survey of soft X-ray transients and variability of X-ray sources at an unprecedented combination of high sensitivity and cadence

Discover otherwise quiescent black holes at almost all astrophysical mass scales and other compact objects by capturing their transient X-ray flares

Detect and localise the electromagnetic-wave sources of gravitational-wave events by synergy with gravitational-wave detectors

X-ray flares

Various classes of high-E transients & variability

Instruments & SC

Wide-field X-ray Telescope WXT (12 modules)

esa 🕐

lobster-eye MPO FoV: 3600 sq deg (1.1 sr) band: 0.5 – 4 keV spatial resolution: ~ 5' (FWHM) sensitivity: > tens times better than current Follow-up X-ray Telescope FXT (2 units)

Wolter-1 optics FoV: ~1 deg band: 0.3-10keV effective area: 300cm² @1keV (1 unit) spatial resolution: 30" (HPD on-axis)

Wide-field X-ray Telescope (WXT)

Development: CAS (SITP, NAO) + NNVT Test/calibration: CAS & ESA WXT PI: *Sun Xiaojin* (SITP); Instr. Sci: *Ling Zhixing,* MA PI: *Zhang Chen* (NAO)

Technology challenges

First large-FoV MPO telescope (432 plates) Large detector array (48 CMOS x 6 x 6 cm²) Novel use of CMOS for space X-ray Soft X-ray band

WXT FoV & Grasp

Grasp

Zhao D. et al. 2017

Follow-up X-ray Telescope (FXT)

Mission profile

Orbit: ~ 600 km (96min), incl. 29 deg Alert data rapid downlink

- * Beidou system (China)
- * VHF (CNES/France)
- Transient alert information to be released immediately and publicly

Target of opportunity command uplink

- ⋆ Normal (S-band): < 1 day</p>
- ★ Time critical (Beidou): < 10 min</p>

Operation modes

- ⋆ Survey (WXT)
- Autonomous X-ray follow-up (FXT)
- ★ Target of opportunity (FXT, WXT)

EP Mission Centre @ NSSC/CAS

- ★ ESA (GS telemetry support)
- EP Science Centre @ CAS
 - * NAOC+IHEP

EP all-sky survey mode

- ⋆ anti-Sun pointings
- ★ 3 snapshots per orbit, each ~20 min
- ★ 3 orbits (~ 5 hr) cover half sky
 - 1 day: ~ 45 snapshots

WXT status

3 QM of complete modules built, tested and calibrated (2021)

WXT MA QM (NAOC/CAS)

WXT status: Mirror assembly

X-ray image of point source

FXT Status

X-ray camera QM built at CAS/IHEP (detector module from MPE) Joint test of STM of mirror module and camera QM at CAS/IHEP QM of mirror module (ESA/Media-Lario) to be delivered to CAS soon

Satellite status: QM AIT

Satellite QM built and tested at MicroSat/CAS (2021-09)

Chief designer Zhang Yonghe

1 FXT STM 1 FXT QM

Thermal balancing & thermal vacuum tests

23

Credit: MicroSat/CAS

EP Science Centre

24

EP Science Centre

Image stacking and source detection for 1 WXT CMOS (9°x9°) *Liu Yuan, et al.*

Simulation of 1 day survey with WXT

- In 3 orbits (~ 5hr) WXT covers most of the night sky
- Cover the whole sky in half year

Pan Haiwu, Zhao Donghua, et al.

Simulated all-sky image & transients in 1-year

Pan Haiwu, Zhao Donghua, et al.

Simulated EP WXT images

Galactic center region (about 20°x 10°)

Credit: EP team

Credit: RIKEN/JAXA/MAXI team

MAXI (10 year)

Estimated detection rates for selected classes

Type of transients	Detections per year	# transients per week
Tidal disruption event (TDE)	10s - 100	EP: ~ tens (?)
TDE with jet	several	Swift: 2.5
Supernova shock breakout	10 – 10s	MAXI: 0.8
Long GRB	10s	
High-z GRB (z > 6-8)	several challenging to measure redshift !	
Short GRB	10	
Low-Iuminosity GRB	10	
Magnetar	a few	
Stellar flares	a few 10 ³	
AGN monitored daily / weekly	tens / hundreds	Note: subject to large uncertainties

Example: simulated detection of a nearby TDE

EP consortium

Chinese Academy of Sciences

- Managed by CAS's National Space Science Centre (NSSC)
- ★ Institutes: NAOC, IHEP, SITP, MicroSAT, NSSC, NNVT, IPC, HIT

European Space Agency (Mission of Opportunity)

- ★ Hardware contribution (mainly FXT)
- ★ Ground station support
- Science management support

Max-Planck-Inst. for extraterrestrial Physics, Germany

★ Hardware contribution (FXT)

CNES, France (collaboration in discussion)

★ VHF network & support (contribution to EP Science Centre)

EP development team

Summary

X-ray sky is rich in various classes of transients and variables

Future of monitoring dynamic X-ray sky is promising, enabled by Lobster-eye MPO technology

Einstein Probe will discover/characterise a large number of faint X-ray transients,

and monitor source variability

Follow-up by ground- and space-based telescopes are essential

Synergy with other Multi-Wavelength & Multi-Messenger facilities offers great

science opportunities

http://ep.nao.cas.cn

Welcome to join EP Science Team!