Studying the expansion of the Universe with quasar spectra

Andreu Font-Ribera

University College London (UCL) Institut de Fisica d'Altes Energies (IFAE, Barcelona)

The distribution of matter in the Universe tells us about:

- Accelerated expansion of the Universe / dark energy
- Tests of general relativity on cosmological scales
- Initial conditions of the Universe / inflation
- Physical properties of dark matter
- Mass and number of neutrino species

However, most of the matter in the Universe is in the form of dark matter and we need indirect tracers to study it

Redshift Surveys

Redshift Surveys

Andreu Font-Ribera - Quasars and the Expansion of the Universe

^AUC

4

Outline

- Introduction to Baryon Acoustic Oscillations
- Past: Baryon Oscillation Spectroscopic Survey (BOSS, 2009-2014)
 - Going to high-z: BAO with the Lyman- α forest
- Present: extended Baryon Oscillation Spectroscopic Survey (eBOSS, 2014-2019)
 - BAO and the H_0 tension
- Future: Dark Energy Spectroscopic Instrument (DESI, 2020-2025)

We can relate redshift to distance if we have a cosmological model

We can learn about the Dark Energy if we can measure distances!

To study the expansion we want to measure the distance to different redshifts

Standard candle (Supernovae)

known luminosity + measure flux

distance

Studying the Expansion

Standard candle (Supernovae)

known luminosity + measure flux

distance

Standard ruler (BAO)

known size + measure apparent size t distance

Before recombination (z >1100), photons and ionized matter were tightly coupled

Primordial density fluctuations generated sound waves in the plasma

These waves froze out at recombination, leaving an imprint at a characteristic scale

Image credit: Daniel Eisenstein

lonized Neutral

Sound horizon at recombination (from Planck): $r_d = 147.6 \pm 0.3 \text{ Mpc}$

$$r_d = \int_{z_d}^{\infty} \frac{c_s(z)}{H(z)} dz \qquad c_s(z) = 3^{-1/2} c \left[1 + \frac{3}{4} \rho_b(z) / \rho_\gamma(z) \right]^{-1/2}$$

Oscillations clearly seen in the CMB temperature power spectrum

11

Sound horizon at recombination (from Planck): $r_d = 147.6 \pm 0.3 \text{ Mpc}$

We measure BAO peak in the transverse direction in BOSS : $\Delta \theta_{BAO}$

We measure BAO peak along the line of sight in BOSS : Δv_{BAO}

$$\Delta \theta_{BAO} = \frac{r_d}{1+z} \frac{1}{D_A(z)} \qquad \Delta v_{BAO} = \frac{r_d}{1+z} \frac{H(z)}{1+z}$$

We learn about the expansion!

Outline

- Introduction to Baryon Acoustic Oscillations
- Past: Baryon Oscillation Spectroscopic Survey (BOSS, 2009-2014)
 - Going to high-z: BAO with the Lyman- α forest
- Present: extended Baryon Oscillation Spectroscopic Survey (eBOSS, 2014-2019)
 - BAO and the H_0 tension
- Future: Dark Energy Spectroscopic Instrument (DESI, 2020-2025)

BOSS (2009-2014)

Baryon Oscillation Spectroscopic Survey (BOSS)

SDSS Telescope (2.5m) Apache Point Observatory (Cloudcroft, New Mexico)

1000 spectra at a time 10.000 sq. deg. (1/4 sky)

DR12 $+30^{\circ}$ Dec (degrees) $+20^{\circ}$ +10-10° 220° 180° 240° 200° 160° 140° 120'RA (degrees) $+20^{\circ}$ Dec (degrees) $+10^{\circ}$ 0° completeness -10° 0.7 0.8 0.9 1.0 60° 20° -20° 40° 0° -40° -60° RA (degrees) 1.3M galaxies (0.2 < z < 0.7)160k quasar (2.1 < z < 3.5)

Andreu Font-Ribera - Quasars and the Expansion of the Universe

BOSS (2009-2014)

- Introduction to Baryon Acoustic Oscillations
- Past: Baryon Oscillation Spectroscopic Survey (BOSS, 2009-2014)
 - Going to high-z: BAO with the Lyman- α forest
- Present: extended Baryon Oscillation Spectroscopic Survey (eBOSS, 2014-2019)
 - BAO and the H_0 tension
- Future: Dark Energy Spectroscopic Instrument (DESI, 2020-2025)

Andreu Font-Ribera - Quasars and the Expansion of the Universe

The Lyman- α forest

Figure from William C. Keel

BOSS Ly α data analysis: from raw data to cosmological fluctuations

$$\delta_F(\mathbf{x}) = \frac{F(\mathbf{x}) - \bar{F}}{\bar{F}}$$

Flux fluctuations in pixels trace the density along the line of sight to the quasar

BOSS Lyman-α BAO

Two independent ways of measuring the BAO scale

Marginal tension (2.3- σ) with Planck+LCDM prediction

UC

- Introduction to Baryon Acoustic Oscillations
- Past: Baryon Oscillation Spectroscopic Survey (BOSS, 2009-2014)
 - Going to high-z: BAO with the Lyman- α forest
- Present: extended Baryon Oscillation Spectroscopic Survey (eBOSS, 2014-2019)
 - BAO and the H_0 tension
- Future: Dark Energy Spectroscopic Instrument (DESI, 2020-2025)

Extended Baryon Oscillation Spectroscopic Survey (eBOSS)

- One of the surveys in SDSS-IV
- Same instrument than BOSS
- Fill gap in 1 < z < 2
- Prototype for DESI
- DRI4 already public
- Final DRI6 public end of 2019

eBOSS Lyα DR14

Results from 2 first years of eBOSS (DRI4) are public

UC

20% more quasars than BOSS

New in eBOSS analyses: use also the LyB region!

eBOSS Lya DR14

Results from 2 first years of eBOSS (DRI4) already public

Errorbars 20% smaller than BOSS DRI2

Andreu Font-Ribera - Quasars and the Expansion of the Universe

Outline

- Introduction to Baryon Acoustic Oscillations
- Past: Baryon Oscillation Spectroscopic Survey (BOSS, 2009-2014)
 - Going to high-z: BAO with the Lyman- α forest
- Present: extended Baryon Oscillation Spectroscopic Survey (eBOSS, 2014-2019)
 - BAO and the H_0 tension
- Future: Dark Energy Spectroscopic Instrument (DESI, 2020-2025)

How fast is the Universe currently expanding?

One of the key cosmological parameters has been historically controversial

BAO and the H₀ tension

Systematics on either side? Problems with flat ΛCDM ?

UC

ENERCY

Inverse distance ladder (anchor SN with BAO at z=0.5)

UC

ENERCY

BAO + LCDM constraint Ω_m and $H_0 r_s$ (sound horizon, size of ruler) BBN prior on Ω_b can break degeneracy and measure H_0 from BAO

â 🛛

BAO and the H₀ tension

They all assume we understand early universe physics (to compute r_d)

ENERGY

Outline

- Introduction to Baryon Acoustic Oscillations
- Past: Baryon Oscillation Spectroscopic Survey (BOSS, 2009-2014)
 - Going to high-z: BAO with the Lyman- α forest
- Present: extended Baryon Oscillation Spectroscopic Survey (eBOSS, 2014-2019)
 - BAO and the H_0 tension
- Future: Dark Energy Spectroscopic Instrument (DESI, 2020-2025)

- 5000 fibers in robotic actuators
- I0 fiber cable bundles -
- 3.2 deg. field of view optics
- 10 spectrographs

Readout & Control

35

Increase BOSS dataset by an order of magnitude

Scheduled to start in 2020

Mayall 4m Telescope Kitt Peak (Tucson, AZ)

Andreu Font-Ribera - Quasars and the Expansion of the Universe

Tsinghua University, March 26th 2020

Focal plane and ring completed

All spectrographs verified and at Kitt Peak

All 10 petals populated with positioners

DESI timeline:

- Corrector installed August 2018
- Commissioning ongoing
- Survey Validation Spring 2020
- Science starts in the Fall!

Andreu Font-Ribera - Quasars and the Expansion of the Universe

z=4 z=2 z=1.5 z=1.5 z=0.7	r=2.	r=5.0 Gp r=4.0 Gpc/h r=3.0 Gpc/h 0 Gpc/h	Two _ hc/h	 Surveys Dark Time Dominat Bands c Bright Time ~4 night BGS/MV 	ed by EL optimized f : s/lunation WS share	Gs for ELG the observation
z=0.5 z=0.2	r=1.0 Gpc/f r=0.5 Gpc/h	٦		time wit	h the prior	ity to BGS
Galaxy type	Redshift	Bands	Targets	Exposures	Good z 's	Baseline
	range	used	$per deg^2$	$per deg^2$	$per deg^2$	sample
LRG	0.4 - 1.0	g,r,z,W1	480	610	430	6.0 M
ELG	0.6 - 1.6	$_{g,r,z}$	2400	1870	1220	17.1 M
QSO (tracers)	< 2.1	$g,\!r,\!z,\!W1,\!W2$	170	170	120	$1.7 \mathrm{M}$
QSO (Ly- α)	> 2.1	$g,\!r,\!z,\!W1,\!W2$	90	250	50	0.7 M
Total in dark time			3140	2900	1820	$(25.5 \mathrm{M})$
BGS	0.05-0.4	r	800	740	710	9.9 M
BGS-Faint	0.05 - 0.4	r	600	460	430	6.0 M
MWS	0.0	g,r (Gaia μ)	800 +	720	720	10.1 M
Total in bright time			2200+	1920	1860	26.0 M

Andreu Font-Ribera - Quasars and the Expansion of the Universe

DESI projections (Font-Ribera++ 2014b)

42

- Baryon Acoustic Oscillations can shed light on dark energy
- BOSS measured BAO at 1% accuracy using galaxies
 - 2% measurement at z~2.3 using quasars and Ly- α forest
- In 2020, DESI will start collecting a x10 larger dataset
- Not only dark energy: neutrino masses, inflationary models...