X-ray study of supernova remnants as remnants of supernovae

Aya Bamba (馬場 彩) U. Tokyo (東京大学)

1.1. Role of supernova remnants in the universe

Thermal aspects:

thin plasma with kT ~ keV time scale <~ 10⁴ yrs in non-equilibrium

distribute heavy elements Origin: explosion of light (Ia) heavy (cc) stars Nonthermal aspects:

shock v ~ 10³⁻⁴ km/s accelerate particles efficiently

distribute cosmic rays

distribute thermal/kinetic E compact stars

SNRs makes the diversity of the universe !

We kept optical observations of SNe long time ! 明月記 (Teika Fujiwara)

the number is limited

How energetic the explosions are ?

```
Total energy: 10^{53} erg
99% of the energy escape via neutrino
Kinetic energy: 10^{51} erg
<-> 1 yr electricity usage in China
2.5e26 erg
total emission of the Sun in its life
~10^{51} erg
```

```
total mass ~ 1 Mo
E = ½ Mo v<sup>2</sup>
-> initial velocity: 1e4 km/s
3% of light speed
```

Chandra movie of Cas A (SN1682) expansion

https://chandra.harvard.edu/photo/2019/firstlight/

1.2. Why X-ray observations are strong to understand SNRs? shock velocity: 10³⁻⁴ km s⁻¹

- -> ejecta and interstellar medium heat up to ~1 MK or 0.1 keV
- -> ionized thin thermal plasma (n ~ 1 cm⁻³)
- -> thermal bremsstrahlung in X-ray band
 - + characteristic X-rays from ionized heavy ions

1.3. Types of Supernova remnants

Type Ia End-point of mass accretion to WD or up to M_{ch} (SD) WD-WD merger (DD)

```
A lot of Fe, Ni, Cr, Mn
Isotropic explosion ?
```

Core-collapsed (CC)

End-point of heavy stars (>~ 10 M_o)

A lot of lighter elements O, Ne, Mg, Si, S, ...

"Standard candle"

Neutron stars, black holes

Questions:

Can we distinguish Ia/cc for SNRs with X-ray observations ? Do they have diversity more than types ? SD/DD progenitor mass of CCs ? Important to understand how the universe became such enriched world. 1.4. Conventional method of type diagnostics

(1) Searching for compact sources

Some of CC SNe: remain neutron starsIa SNe:remain nothing

Young neutron stars:

emit blackbody emission with kT ~ keV forms pulsar wind nebulae with bright synchrotron X-rays

They are CC SNRs !

(2) Abundance pattern of heated ejectaIa SNRs have abundant Fe / Fe groupCC SNRs have abundant lighter alpha-elements (Si, S, Mg, ...)

cannot see unheated ejecta -> cannot be used for very young SNRs contamination of heated ISM -> cannot be used for old SNRs

2. Diversity of progenitor explosion

2.1. Type estimation from X-ray morphology (Lopez+11)

Ia: isotropic explosioncc: anisotropic explosion

circular SNR ? more complicated SNR ?

Lopez+11: wavelet analysis of Chandra image of many SNRs

CC SNRs has more distorted morphology !

NuSTAR: ⁴⁴Ti enables us to access unheated ejecta CC SNR expansion with ⁴⁴Ti

SN 1987A (~30 yrs)

Only red-shift ⁴⁴Ti line -> asym. expansion of ejecta

Cas A (~330 yrs)

Shocked Si/Mg, Fe (Chandra) ⁴⁴Ti (NuSTAR) (Grefenstette+14)

asym. distribution Neither isotropic nor axial symmetric expansion

CC SNRs show highly asymmetric expansion

Does Ia expand isotopically ?

SN1006 (Uchida+13)

Si, S, Fe are abundant in south eastern region

Tycho (Yamaguchi+17)

pure iron ejecta (no Cr, Mn)

Several "text-book" Ia remnants show anisotropy. It is still an open issue how isotropic Ia explosions are.

important on heavy element distribution in the universe, maximum luminosity of SNe (amount of Ni), etc.

2.2. Type estimation from Iron K line center (Yamaguchi+14)

low ionization state high ionization state

Ia has lower E iron-K

Ia is really in the low density ISM

More classification from spectral info.?

2.3. Origin of Ia?

~M_{ch}, dense core (ρ≥ 2e8 g/cm³) sub M_{ch}, less dense core high ρ in SD core makes more Ni, Mn due to more electron capture

3C397 needs M_{ch}

Strong diagnostics to distinguish SD and DD Related to abundance of CGs

2.4. Expansion structure of Ia SNRs DD -> more symmetric SD -> more asymmetric ?? Doppler mapping show us the ejecta expansion structure of young SNRs.

almost symmetric

red and blue-shifet components asymmetric expansion

SNRs of Ia SNe have diversity. Diversity of explosion mechanism ?

2.5. Variety of CC SNRs

Cas A NASA/CXC/SAO G11.2-0.3 NASA/CXC/Eureka Scientific/Roberts+ Crab nebula

bright thermal faint NS W

NS both thermal/PSR only bright pulsar/PWN NS What makes such difference ?

Thermal line search from Crab w. Hitomi/micro-calorimeter -> blind search could not detect any emission/absorption line

-> SN with less explosion E ? (Hitomi coll.+17)

3. Future plan: Micro-calorimeter science

3.1. Hitomi mission

Hitomi mission: (2016) JS-US X-ray mission https://heasarc.gsfc.nasa.gov/docs/hitomi/

Wide energy range 0.2 - 600 keV

First X-ray microcalorimeter energy resolution ~30 times better than X-ray CCDs

Unfortunately, the satellite was lost only 1 month after the launch.

But Hitomi left heritages.

Perseus cluster is "quiet".

Lines do not Doppler broadened (turbulent velocity ~ 164 km/s) Hitomi arised a new question: "Why gas in clusters are "quiet" although there are a lot of shock and heat sources ?"

Where Fe and Ni came from ?

Heavy ions produced by star nucleosynthesis are distributed

into clusters of galaxies. Fe/Ni ratio is an important parameter to understand which kinds of stars are born in the clusters.

Same abundance pattern between Perseus and our solar system ! -> Recipe of galaxies can be common. Hitomi papers and more:

16 papers including 2 Nature papers. We believe the data still have unpublished new results.

You can find Hitomi archive via: https://heasarc.gsfc.nasa.gov/docs/hitomi/

3.2. XRISM mission

X-Ray Imaging Spectroscopy Mission to be launched on JFY2021

Expected science with XRISM

Ion kT measurement from Doppler

Available at: ASTRO-H White papers arxiv:1412.1169 arxiv: 1412.1170

Simulation tools will be available in this month. https://xrism.isas.jaxa.jp/

Minor element search

expansion measurement

4. Summary

- Supernova remnants make diversity of the universe in thermal and nonthermal aspects.
- X-ray observations are strong tool of SNR study.
- \succ We can resolve Type of progenitor SNe.
- Both Ia and CC have variety.
- Near future missions such as XRISM will resolve many unsolved problems.