Tsinghua University

Yamila Miguel Leiden Observatory SRON

UNVEILING THE SECRETS OF JUPITER

with the Juno mission of

Tsinghua University

Yamila Miguel Leiden Observatory SRON

UNVEILING THE SECRETS OF JUPITER

with the Juno mission of

Motivation WHY STUDY THE GIANT PLANETS?

Yamila Miguel Tsinghua October 2020

Motivation WHY STUDY THE GIANT PLANETS?

Introduction: Solar System Exploration

Yamila Miguel Tsinghua October 2020

Introduction: Solar System Exploration

Introduction

Introduction

Welbanks+(ApJL, 2019)

HOW ARE THE HEAVIES DISTRIBUTED?

1. We don't know very well what is the amount of heavies

- 1. We don't know very well what is the amount of heavies
- 2. We don't know the size and composition of its core

- 1. We don't know very well what is the amount of heavies
- 2. We don't know the size and composition of its core
- 3.It is made (mostly) of H and we don't know H very well

Miguel+(A&A, 2016) also Saumon & Guillot (ApJ, 2004), Baraffe+(PPVI, 2014)

 M_{-}/M_{-}

- 1. We don't know very well what is the amount of heavies
- 2. We don't know the size and composition of its core
- 3. It is made (mostly) of H and we don't know H very well
- 4.It (most likely) has a He phase transition

- 1. We don't know very well what is the amount of heavies
- 2. We don't know the size and composition of its core
- 3. It is made (mostly) of H and we don't know H very well
- 4.It (most likely) has a He phase transition
- 5. It has a differential rotation

- 1. We don't know very well what is the amount of heavies
- 2. We don't know the size and composition of its core
- 3. It is made (mostly) of H and we don't know H very well
- 4.It (most likely) has a He phase transition
- 5. It has a differential rotation
- 6.It might have a compositional gradient that inhibits convection

- 1. We don't know very well what is the amount of heavies
- 2. We don't know the size and composition of its core
- 3. It is made (mostly) of H and we don't know H very well
- 4.It (most likely) has a He phase transition
- 5. It has a differential rotation
- 6.It might have a compositional gradient that inhibits convection
- 7. It has magnetic fields

- 1. We don't know very well what is the amount of heavies
- 2. We don't know the size and composition of its core
- 3. It is made (mostly) of H and we don't know H very well
- 4.It (most likely) has a He phase transition
- 5. It has a differential rotation
- 6.It might have a compositional gradient that inhibits convection
- 7. It has magnetic fields
- 8. We can not go inside the planet to make measurements!

Data

$$J_{2i} = -\frac{1}{MR_{\text{eq}}^{2i}} \int \rho(r)r^{2i}P_{2i}(\cos\theta)d\tau$$
$$U(r,\theta) = \frac{GM}{r} \left\{ 1 - \sum_{i=1}^{\infty} \left(\frac{R_{\text{eq}}}{r}\right)^{2i} J_{2i}P_{2i}(\cos\theta) \right\}$$

Methods: Gravity Field BEFORE & AFTER JUNO

Methods: Gravity Field

Methods: Gravity Field BEFORE & AFTER JUNG

Bolton+(Science, 2017), Folkner+(GRL, 2017), less +(Nature, 2018)

Methods: Gravity Field BEFORE & AFTER JUNO

Bolton+(Science, 2017), Folkner+(GRL, 2017), less +(Nature, 2018)

Methods: Gravity Field BEFORE & AFTER JUNO

Methods: Gravity Field BEFORE & AFTER JUND

Methods: Gravity Field BEFORE & AFTER JUND

Methods: Gravity Field BEFORE & AFTER JUNG

Methods: Gravity Field BEFORE & AFTER JUNG

Atreya+2016 Li+(Nature Astronomy, 2020)

Atreya+2016 Li+(Nature Astronomy, 2020)

Pinhas+(mnras, 2019)

also: Spake+2018; Tsiaras+2018; Fraine+2014; McCullough+2014; Wakeford+2013; Deming+2013; Damiano+2017; Evans+2016; Kreidberg+2014; Kreidberg+2015; Sing+2015; Knutson+2014

Methods MODELING JUPITER'S INTERIOR

Methods MODELING JUPITER'S INTERIOR

Methods MODELING JUPITER'S INTERIOR

Observational constrains:

R, M, J₂, J₄, J₆, Y, ...

$$\frac{\partial P}{\partial r} = -\rho g,$$

$$\frac{\partial T}{\partial r} = \frac{\partial P}{\partial r} \frac{T}{P} \nabla_T,$$

$$\frac{\partial m}{\partial r} = 4\pi r^2 \rho,$$

$$\frac{\partial L}{\partial r} = 4\pi r^2 \rho \left(\dot{\epsilon} - T \frac{\partial S}{\partial t} \right),\,$$

Results using Juno data

Results using Juno data

Yamila Miguel Tsinghua October 2020

Altieri+(review on Jupiter to appear in 2020)
also: Wahl+ (GRL, 2017), with Mz approx. 25 MEarth
Dilute core formation & evolution: Lozovsky+2017, Vazan+2016
Alternative models: Debras & Chabrier (2019)

Results using Juno data

Yamila Miguel Tsinghua October 2020

Are the H₂- and H_{metallic}-dominated Homogeneous in Z?

Altieri+(review on Jupiter to appear in 2020)
also: Wahl+ (GRL, 2017), with Mz approx. 25 MEarth
Dilute core formation & evolution: Lozovsky+2017, Vazan+2016
Alternative models: Debras & Chabrier (2019)

Initial parameters: Mcore, Yatm, Zatm, Ydeep, Zdeep...

Radius, J2, J4

V

Are the ones observed with Juno?

V

We find a solution!

Method

Initial parameters: Mcore, Yatm, Zatm, Ydeep, Zdeep...

Radius, J2, J4

Are the ones observed with Juno?

We find a solution!

Methods GRAVITY FIELD

Methods GRAVITY FIELD

Methods GRAVITY FIELD

October 2020

Juno mission JUPITER'S ROTATION Tsinghua October 2020

Juno mission CRNTATION Tsinghua October 2020

Yamila Miguel Tsinghua October 2020

Yamila Miguel Tsinghua October 2020

Guillot, Miguel + (Nature, 2018)

Yamila Miguel Tsinghua October 2020

Guillot, Miguel + (Nature, 2018)

Yamila Miguel Tsinghua October 2020

Guillot, Miguel + (Nature, 2018), Kaspi + (Nature, 2018)

NASA press release for our papers: Guillot, Miguel+(Nature, 2018), Kaspi+(Nature, 2018) and less+(Nature+2018)

NASA press release for our papers: Guillot, Miguel+(Nature, 2018), Kaspi+(Nature, 2018) and less+(Nature+2018)

Yamila Miguel - ymiguel@strw.leidenuniv.nl @AstroYamila - www.YamilaMiguel.com

JUNO GRAVITY DATA

Juno greatly improved accuracy of Js

Including measurements of J8 and J10 and the odd Js for the first time

JUPITER'S ENVELOPE

Interior models have a higher concentration of heavies in the metallic region:

Jupiter's envelope is not homogeneous

Mixing was not complete in Jupiter's envelope

JUNO GRAVITY DATA

Juno greatly improved accuracy of Js

Including measurements of J8 and J10 and the odd Js for the first time

> >

JUPITER'S ENVELOPE

Interior models have a higher concentration of heavies in the metallic region:

Jupiter's envelope is not homogeneous

Mixing was not complete in Jupiter's envelope

JUNO GRAVITY DATA

Juno greatly improved accuracy of Js

Including measurements of J8 and J10 and the odd Js for the first time

DIFFERENTIAL ROTATION

Constrained the depth of the observed zonal flows ~3000km

_ _

JUPITER'S ENVELOPE

Interior models have a higher concentration of heavies in the metallic region:

Jupiter's envelope is not homogeneous

Mixing was not complete in Jupiter's envelope

JUNO IWG

Tristan Guillot, William B. Hubbard, Yohai Kaspi, Burkhard Militzer, Sean Wahl, William Folkner, Luciano less, Ravit Helled, Eli Galanti, Daniele Durante, Marzia Parisi, Hao Cao, Daniel Reese, Jonathan I Lunine, Scott J Bolton, David J. Stevenson

JUNO GRAVITY DATA

Juno greatly improved accuracy of Js

Including measurements of J8 and J10 and the odd Js for the first time

DIFFERENTIAL ROTATION

Constrained the depth of the observed zonal flows ~3000km

Yamila Miguel - ymiguel@strw.leidenuniv.nl @AstroYamila - www.YamilaMiguel.com

