Tsinghua Seminar

Supermassive Black Holes 超大**质**量黑洞及其若干重大问题

Jian-Min Wang (王建民)

Institute of High Energy Physics 2024/09/12

Outline:

- Formation of SMBH
- Masses and Spins
- SMBH binaries and nano-Hz GWs
- Satellite BHs and observational consequences
- Opportunities in the era of JWST and VLTI

1、Formation of SMBHs

NATURE

3C 273 : A STAR-LIKE OBJECT WITH LARGE RED-SHIFT

By Dr. M. SCHMIDT

Mount Wilson and Palomar Observatories, Carnegie Institution of Washington, California Institute of Technology, Pasadena

THE only objects seen on a 200-in. plate near the positions of the components of the radio source 3C 273 reported by Hazard, Mackey and Shimmins in the preceding article are a star of about thirteenth magnitude and a faint wisp or jet. The jet has a width of 1"-2" and extends away from the star in position angle 43°. It is not visible within 11" from the star and ends abruptly at 20" from the star. The position of the star, kindly furnished by Dr. T. A. Matthews, is R.A. 12h 26m 33·35s \pm 0·04s, Decl. $\pm 2^{\circ}$ 19' $\pm 2 \cdot 3''$ (1950), or 1" east of component B of the radio source. The end of the jet is 1" east of component A. The close correlation between the radio structure and the star with the jet is suggestive and intriguing.

1040

Spectra of the star were taken with the prime-focus spectrograph at the 200-in. telescope with dispersions of 400 and 190 Å per mm. They show a number of broad emission features on a rather blue continuum. The most prominent features, which have widths around 50 Å, are, in order of strength, at 5632, 3239, 5792, 5032 Å. These and other weaker emission bands are listed in the first column of Table 1. For three faint bands with widths of 100-200 Å the total range of wave-length is indicated.

The only explanation found for the spectrum involves a considerable red-shift. A red-shift $\Delta\lambda/\lambda_0$ of 0.158 allows identification of four emission bands as Balmer lines, as indicated in Table 1. Their relative strengths are in agreement with this explanation. Other identifications based on the above red-shift involve the Mg II lines around 2798 Å, thus far only found in emission in the solar chromosphere, and a forbidden line of [O III] at 5007 Å. On this basis another [O III] line is expected at 4959 Å with a strength one-third of that of the line at 5007 Å. Its detectability in the spectrum would be marginal. A weak emission band suspected at 5705 Å, or 4927 Å reduced for red-shift, does not fit the wave-length. No explanation is offered for the three very wide emission bands.

It thus appears that six emission bands with widths around 50 Å can be explained with a red-shift of 0.158. The differences between the observed and the expected wave-lengths amount to 6 Å at the most and can be entirely understood in terms of the uncertainty of the measured wave-lengths. The present explanation is supported by observations of the infra-red spectrum communicated by

Table 1.	WAVE-LENGTHS	AND IDENTIFI	CATIONS
λ	λ/1-158	λ,	
3239	2797	2798	Mg II
4595	3968	3970	He
4753	4104	4102	Hδ
5032	4345	4340	H_{γ}
5200-5415	4490-4675		
5632	4864	4861	Hβ
5792	5002	5007	[0 III]
6005 - 6190	5186 - 5345		
6400 - 6510	5527 - 5622		

Oke in a following article, and by the spectrum of another star-like object associated with the radio source 3C 48 discussed by Greenstein and Matthews in another communication.

The unprecedented identification of the spectrum of an apparently stellar object in terms of a large red-shift suggests either of the two following explanations.

(1) The stellar object is a star with a large gravitational red-shift. Its radius would then be of the order of 10 km. Preliminary considerations show that it would be extremely difficult, if not impossible, to account for the occurrence of permitted lines and a forbidden line with the same redshift, and with widths of only 1 or 2 per cent of the wavelength.

(2) The stellar object is the nuclear region of a galaxy with a cosmological red-shift of 0.158, corresponding to an apparent velocity of 47,400 km/sec. The distance would be around 500 megaparsecs, and the diameter of the nuclear region would have to be less than 1 kiloparsec. This nuclear region would be about 100 times brighter optically than the luminous galaxies which have been identified with radio sources thus far. If the optical jet and component A of the radio source are associated with the galaxy, they would be at a distance of 50 kiloparsecs, implying a time-scale in excess of 10⁵ years. The total energy radiated in the optical range at constant luminosity would be of the order of 10^{59} ergs.

Only the detection of an irrefutable proper motion or parallax would definitively establish 3C 273 as an object within our Galaxy. At the present time, however, the explanation in terms of an extragalactic origin seems most direct and least objectionable.

I thank Dr. T. A. Matthews, who directed my attention to the radio source, and Drs. Greenstein and Oke for valuable discussions.

NUCLEAR EMISSION IN SPIRAL NEBULAE*

CARL K. SEYFERT[†]

ABSTRACT

Spectrograms of dispersion 37–200 A/mm have been obtained of six extragalactic nebulae with highexcitation nuclear emission lines superposed on a normal G-type spectrum. All the stronger emission lines from λ 3727 to λ 6731 found in planetaries like NGC 7027 appear in the spectra of the two brightest spirals observed, NGC 1068 and NGC 4151.

ESO director: 1975-1987

38W

0

59ApJ

5

EMISSION NUCLEI IN GALAXIES

L. WOLTJER* Yerkes Observatory, University of Chicago Received February 16, 1959

ABSTRACT

Some galaxies which show wide emission lines in the spectra of their nuclei are discussed. It is shown that, on statistical grounds, the nuclear emission must last for several times 10⁸ years at least. The nuclei are extremely narrow, of the order of 100 parsecs, and, if a normal mass-to-light ratio applies, extremely massive. The width of the emission lines, which indicates velocities of a few thousand kilometers per second, is probably due to fast motions, circular or random, in the gravitational fields of the nuclei. The high star density in the nuclei may provide a source of excitation. In the nucleus of our own Galaxy the radio source Sagittarius gives evidence of strong magnetic fields and large amounts of relativistic particles. A mass of a few times 10⁸ solar masses is needed to prevent disintegration of the source. The Andromeda Nebula has a nucleus with a somewhat smaller mass. The occurrence of dense nuclei may be a common characteristic of many galaxies.

FWHM(Hβ) : 3000-10000km/s

 $T > 10^{8}$ K

Fully ionized: no lines

Deep potential of heavy object:

motion-broadening

NOTES

ACCRETION OF INTERSTELLAR MATTER BY MASSIVE OBJECTS

Observations of quasi-stellar radio sources have indicated the existence in the Universe of extremely massive objects of relatively small size. The present note discusses the possible further growth in mass of a relatively massive object, by means of accretion of interstellar gas onto it, and the accompanying energy release. Although there is no evidence for (and possibly some evidence *against*) quasi-stellar radio sources occurring inside ordinary galaxies, for the sake of concreteness we consider the fate of an object of mass $M > 10^6$ (masses in solar units throughout) in an ordinary spiral galaxy somewhat like ours.

E. E. SALPETER*†

Received May 7, 1964 NEWMAN LABORATORY OF NUCLEAR STUDIES AND CENTER FOR RADIOPHYSICS AND SPACE RESEARCH CORNELL UNIVERSITY AND GODDARD INSTITUTE FOR SPACE STUDIES NEW YORK, NEW YORK

Доклады Академии наук СССР 1964. Том 158, № 4

АСТРОНОМИЯ

Z'elDovich & Novikov Академик Я. Б. ЗЕЛЬДОВИЧ, И. Д. НОВИКОВ

ОЦЕНКА МАССЫ СВЕРХЗВЕЗДЫ

Анализ наблюдательных данных с сверхзвездах типа 3С 273 показывает (¹), что непрерывный спектр этих объектов в оптической области испускается центральным телом с размерами порядка 2 · 10¹⁶ см, а эмиссионные линии возникают во внешней оболочке с размерами несколько парсек или больше. Генерация светового потока происходит, вероятно, в самой внутренней центральной области центрального тела, которую мы будем называть ядром. Окружающую ядро плазму назовем условно атмосферой. Для оценки массы сверхзвезды рассмотрим силы, действующие на плазму атмосферы. Предположим, что сила тяготения уравновешивается силой светсвого давления. Это предположение, некоторое обоснование которого будет дано ниже, приводит, как мы покажем, к значению массы сверхзвезды порядка 10⁸ М_☉.

Energy source: supermassive black hole

PHYSICAL REVIEW LETTERS

GRAVITATIONAL COLLAPSE AND SPACE-TIME SINGULARITIES

Roger Penrose Department of Mathematics, Birkbeck College, London, England (Received 18 December 1964)

The discovery of the quasistellar radio sources has stimulated renewed interest in the question of gravitational collapse. It has been suggested by some authors¹ that the enormous amounts of energy that these objects apparently emit may result from the collapse of a mass of the order of $(10^6 - 10^8) M_{\odot}$ to the neighborhood of its Schwarzschild radius, accompanied by a violent release of energy, possibly in the form of gravitational radiation. The detailed mathematical discussion of such situations is difficult since the full complexity of general relativity is required. Consequently, most exact calculations concerned with the implications of gravitational collapse have employed the simplifying assumption of spherical symmetry. Unfortunately, this precludes any detailed discussion of gravitational radiation-which requires at least a guadripole structure.

Wolf physics (1988)

¹F. Hoyle and W. A. Fowler, Monthly Notices Roy. Astron. Soc. 125, 169 (1963); F. Hoyle, W. A. Fowler, G. R. Burbidge, and E. M. Burbidge, Astrophys. J. 139, 909 (1964); W. A. Fowler, Rev. Mod. Phys. 36, 545 (1964); Ya. B. Zel'dovich and I. D. Novikov, Dokl. Akad. Nauk SSSR 155, 1033 (1964) [translation: Soviet Phys.-Doklady 9, 246 (1964)]; I. S. Shklovskii and N. S. Kardashev, Dokl. Akad. Nauk SSSR 155, 1039 (1964) [translation: Soviet Phys.-Doklady 9, 252 (1964)]; Ya. B. Zel'dovich and M. A. Podurets, Dokl. Akad. Nauk SSSR 156, 57 (1964) [translation: Soviet Phys.-Doklady 9, 373 (1964)]. Also various articles in the Proceedings of the 1963 Dallas Conference on Gravitational Collapse (University of Chicago Press, Chicago, Illinois, 1964).

Galactic Nuclei as Collapsed Old Quasars

by

D. LYNDEN-BELL

Royal Greenwich Observatory, Herstmonceux Castle, Sussex

Fig. 1. The emitted spectrum of disk and synchrotron radiation for the standard model. The flux from Sagittarius A is weaker by a factor 100, indicating only 1 per cent efficiency of the proton synchrotron. a, Proton synchrotron; b, outer disk; c, central disk; d, electron synchrotron.

perature distributions. The total emission at frequency ν is given by

$$S_{\nu} = \int_{0}^{\infty} \frac{c}{4} u_{\nu} (T(r)) 4\pi r dr = \frac{8\pi^{2}h}{c^{2}} \int_{0}^{\infty} \frac{v^{3} r dr}{\exp(hv/kT) - 1}$$

Writing $x = hv/kT = hvr^{2a}(kA)$ we find

$$S_{\nu} = \frac{4\pi^{2}h}{c^{2}} \left(\frac{kA}{h}\right)^{a} \int_{0}^{\infty} \frac{a \ x^{a-1}}{e^{x}-1} \ \mathrm{d}x \ \nu^{3-a}$$
$$\int_{0}^{\infty} \frac{a \ x^{a-1}}{e^{x}-1} \ \mathrm{d}x = a \ \Gamma(a)\zeta(a)$$

Thus for a = 8/3 we have $S_{\nu} \propto \nu^{1/3}$

where

Powerful emissions from the centres of nearby galaxies may represent dead quasars.

Galactic center:

motivation

https://doi.org/10.3847/2041-8213/ac68ef

THE ASTROPHYSICAL JOURNAL LETTERS, 932:L6 (29pp), 2022 June 10 © 2022. The Author(s). Published by the American Astronomical Society. OPEN ACCESS

The Young Stars in the Galactic Center

Sebastiano D. von Fellenberg^{1,2}, Stefan Gillessen², Julia Stadler³, Michi Bauböck⁴, Reinhard Genzel^{2,5}, Tim de Zeeuw^{2,6}, Oliver Pfuhl⁷, Pau Amaro Seoane^{2,8,9,10}, Antonia Drescher², Frank Eisenhauer², Maryam Habibi², Thomas Ott², Felix Widmann², and Alice Young²

Ann. Rev. Astron. Astrophys. 1984. 22:471–506 Copyright © 1984 by Annual Reviews Inc. All rights reserved

BLACK HOLE MODELS FOR ACTIVE GALACTIC NUCLEI

Martin J. Rees

Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, England

massive black hole

Quasars and galaxies: co-evolution

THE ASTROPHYSICAL JOURNAL, 539:L9-L12, 2000 August 10 © 2000. The American Astronomical Society. All rights reserved. Printed in U.S.A.

A FUNDAMENTAL RELATION BETWEEN SUPERMASSIVE BLACK HOLES AND THEIR HOST GALAXIES

LAURA FERRARESE¹ Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095; laura@astro.ucla.edu DAVID MERRITT Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ 08854; merritt@physics.rutgers.edu Received 2000 June 1; accepted 2000 June 29; published 2000 August 3

THE ASTROPHYSICAL JOURNAL, 539:L13-L16, 2000 August 10 © 2000. The American Astronomical Society. All rights reserved. Printed in U.S.A

A RELATIONSHIP BETWEEN NUCLEAR BLACK HOLE MASS AND GALAXY VELOCITY DISPERSION

KARL GEBHARDT,^{1,2} RALF BENDER,³ GARY BOWER,⁴ ALAN DRESSLER,⁵ S. M. FABER,² ALEXEI V. FILIPPENKO,⁶ RICHARD GREEN,⁴ CARL GRILLMAIR,⁷ LUIS C. Ho,⁵ JOHN KORMENDY,⁸ TOD R. LAUER,⁴ JOHN MAGORRIAN,⁹ JASON PINKNEY,¹⁰ DOUGLAS RICHSTONE,¹⁰ AND SCOTT TREMAINE¹ Received 2000 June 2; accepted 2000 June 29; published 2000 August 3

Richstone+1998

We thank Avi Loeb for an illuminating discussion, which served as a key motivation for this Letter, and W. Dehnen, C.

We thank Avi Loeb for suggesting that we examine the correlation between black hole mass and velocity dispersion.

Soltan Argument

Mon. Not. R. astr. Soc. (1982) 200, 115-122

Masses of quasars

Andrzej Sołtan N. Copernicus Astronomical Centre, Bartycka 18, 00-716 Warsaw, Poland

Received 1981 October 18; in original form 1981 August 19

 $\rho_{\rm QR} = \int_0^\infty \int_0^\infty L \Phi(L|z) \, \mathrm{d}L \frac{\mathrm{d}t}{\mathrm{d}z} \, \mathrm{d}z$

Mon. Not. R. Astron. Soc. (1992) 259, 421-424

Remnants of the quasars

Arati Chokshi^{*} and Edwin L. Turner Princeton University Observatory, Peyton Hall, Princeton, NJ 08544, USA

Accepted 1992 May 19. Received 1992 May 11; in original form 1992 February 3

ABSTRACT

Assuming a standard black hole accretion model for quasars, we estimate the present total mass density, ρ_{BH} , of quasar remnants using recent observations of quasar populations and of typical quasar spectra over a wide wavelength range. We find $\rho_{BH} \ge (1.4-2.2) \times 10^5 M_{\odot} Mpc^{-3}$ for a quasar radiative efficiency of 0.1. This is an upward revision by a factor of 3.0-4.6 from a decade-old estimate by Softan. A typical bright galaxy is thus expected to contain a central black hole of $\ge 10^7 h^{-3} M_{\odot}$. Furthermore, we expect that ≥ 50 per cent of ρ_{BH} is contributed by objects of mass $\ge 10^8 h^{-2} M_{\odot}$ and ≥ 10 per cent by those more massive than about $6 \times 10^8 h^{-2} M_{\odot}$.

Mon. Not. R. Astron. Soc. 335, 965-976 (2002)

Observational constraints on growth of massive black holes

Qingjuan Yu^{*} and Scott Tremaine^{*} Princeton University Observatory, Peyton Hall, Princeton, NJ 08544-1001, USA

> Conclusion: SMBH from accretion

Article

A small and vigorous black hole in the early Universe Nature | Vol 627 | 7 March 2024 | 59

https://doi.org/10.1038/s41586-024-07052-5

Received: 21 May 2023

Accepted: 9 January 2024

Published online: 17 January 2024

Open access

Check for updates

Super-Eddington BHs

Roberto Maiolino^{1,2,3}, Jan Scholtz^{1,2}, Joris Witstok^{1,2}, Stefano Carniani⁴, Francesco D'Eugenio^{1,2}, Anna de Graaff⁵, Hannah Übler^{1,2}, Sandro Tacchella^{1,2}, Emma Curtis-Lake⁶, Santiago Arribas⁷, Andrew Bunker⁸, Stéphane Charlot⁹, Jacopo Chevallard⁸, Mirko Curti¹⁰, Tobias J. Looser^{1,2}, Michael V. Maseda¹¹, Timothy D. Rawle¹², Bruno Rodríguez del Pino⁷, Chris J. Willott¹³, Eiichi Egami¹⁴, Daniel J. Eisenstein¹⁵, Kevin N. Hainline¹⁴. Brant Robertson¹⁶. Christina C. Williams¹⁷. Christopher N. A. Willmer¹⁴. William M. Baker^{1,2}, Kristan Boyett^{18,19}, Christa DeCoursey¹⁴, Andrew C. Fabian²⁰, Jakob M. Helton¹⁴, Zhiyuan Ji¹⁴, Gareth C. Jones⁸, Nimisha Kumari²¹, Nicolas Laporte^{1,2}, Erica J. Nelson²², Michele Perna⁷, Lester Sandles^{1,2}, Irene Shivaei¹⁴ & Fengwu Sun¹⁴

Several theories have been proposed to describe the formation of black hole seeds in the early Universe and to explain the emergence of very massive black holes observed in the first thousand million years after the Big Bang¹⁻³. Models consider different seeding and accretion scenarios⁴⁻⁷, which require the detection and characterization of black holes in the first few hundred million years after the Big Bang to be validated. Here we present an extensive analysis of the JWST-NIRSpec spectrum of GN-z11, an exceptionally luminous galaxy at z = 10.6, revealing the detection of the $[Neiv]\lambda 2423$ and CII* $\lambda 1335$ transitions (typical of active galactic nuclei), as well as semi-forbidden nebular lines tracing gas densities higher than 10⁹ cm⁻³, typical of the broad line region of active galactic nuclei. These spectral features indicate that GN-z11 hosts an accreting black hole. The spectrum also reveals a deep and blueshifted CIV λ 1549 absorption trough, tracing an outflow with velocity 800–1,000 km s⁻¹, probably driven by the active galactic nucleus. Assuming local virial relations, we derive a black hole mass of $\log(M_{\rm BH}/M_{\odot}) = 6.2 \pm 0.3$, accreting

at about five times the Eddington rate. These properties are consistent with both heavy seeds scenarios and scenarios considering intermediate and light seeds experiencing episodic super-Eddington phases. Our finding explains the high luminosity of GN-z11 and can also provide an explanation for its exceptionally high nitrogen abundance.

Article

A dynamical measure of the black hole mass in a quasar 11 billion years ago

Nature | Vol 627 | 14 March 2024 | 281

	https://doi.org/10.1038/s41586-024-07053-4	R. Abuter ¹ , F. Allouche ² , A. Amorim ^{3,4} , C. Bailet ² , A. Berdeu ⁵ , JP. Berger ⁶ , P. Berio ² , A. Bigioli ⁷ ,				
	Received: 7 August 2023	O. Boebion ² , ML. Bolzer ^{8,910} , H. Bonnet ¹ , G. Bourdarot ⁸ , P. Bourget ¹¹ , W. Brandner ¹² , Y. Cao R. Conzelmann ¹ , M. Comin ¹ , Y. Clénet ⁵ , B. Courtney-Barrer ^{11,13} , R. Davies ⁸ , D. Defrère ⁷				
	Accepted: 9 January 2024	A. Delboulbé ⁶ , F. Delplancke-Ströbel ¹ , R. Dembet ⁵ , J. Denter ¹⁴ , P. T. de Zeeuw ¹⁵ , A. Drescher ⁸ , A. Eckart ^{16,17} , C. Édouard ⁵ , F. Eisenhauer ⁸ , M. Fabricius ⁸ , H. Feuchtgruber ⁸ , G. Finger ⁸ , N. M. Förster Schreiber ⁸ , P. Garcia ^{4,18} , R. Garcia Lopez ¹⁹ , F. Gao ¹⁶ , E. Gendron ⁵ , R. Genzel ^{8,20,21} , J. P. Gil ¹¹ , S. Gillessen ⁸ , T. Gomes ^{4,18} , F. Gonté ¹ , C. Gouvret ² , P. Guajardo ¹¹ , S. Guieu ⁶ , W. Hackenberg ¹ , N. Haddad ¹¹ , M. Hartl ⁸ , X. Haubois ¹¹ , F. Haußmann ⁸ , G. Heißel ^{5,22} , Th. Henning ¹² , S. Hippler ¹² , S. F. Hönig ²³ , M. Horrobin ¹⁷ , N. Hubin ¹ , E. Jacqmart ² , L. Jocou ⁶ , A. Kaufer ¹¹ , P. Kervella ⁵ , J. Kolb ¹ , H. Korhonen ^{11,12} , S. Lacour ¹⁵ , S. Lagarde ² , O. Lai ² , V. Lapeyrère ⁵ , R. Laugier ⁷ , JB. Le Bouquin ⁶ , J. Leftley ² , P. Léna ⁵ , S. Lewis ¹ , D. Liu ⁸ , B. Lopez ² , D. Lutz ⁸ , Y. Magnard ⁶ , F. Mang ^{8,9} , A. Marcotto ² , D. Maurel ⁶ , A. Mérand ¹ , F. Millour ² , N. More ⁸ , H. Netzer ²⁴ , H. Nowacki ⁶ , M. Nowak ²⁵ , S. Oberti ¹ , T. Ott ⁸ , L. Pallanca ¹¹ , T. Paumard ⁵ , K. Perraut ⁶ , G. Perrin ⁵ , R. Petrov ² , O. Pfuhl ¹ , N. Pourré ⁶ , S. Rabien ⁸ , C. Rau ⁸ , M. Riquelme ¹ , S. Robbe-Dubois ² , S. Rochat ⁶ , M. Salman ⁷ , J. Sanchez-Bermudez ^{12,26} , D. J. D. Santos ⁸ , S. Scheithauer ¹² , M. Schöller ¹ , J. Schubert ⁸ , N. Schuhler ¹¹ , J. Shangguan ⁸ , P. Shchekaturov ¹ , T. T. Shimizu ⁸ , A. Sevin ⁵ , F. Soulez ¹⁰ , A. Spang ² , E. Stadler ⁶ , A. Sternberg ^{24,27} , C. Straubmeier ¹⁷ , E. Sturm ⁸ , C. Sykes ²³ , L. J. Tacconi ⁸ , K. R. W. Tristram ¹¹ , F. Vincent ⁵ , S. von Fellenberg ¹⁶ , S. Uysal ⁸ , F. Widmann ⁸ , E. Wieprecht ⁸ , E. Wiezorrek ⁸ , J. Woillez ¹ & G. Zins ¹				
	Published online: 29 January 2024					
	Open access					
	Check for updates					
	SDSS J0920 z=2.3	Tight relationships exist in the local Universe between the central stellar properties of galaxies and the mass of their supermassive black hole $(SMBH)^{1-3}$. These suggest that galaxies and black holes co-evolve, with the main regulation mechanism being energetic feedback from accretion onto the black hole during its quasar phase ⁴⁻⁶ . A crucial question is how the relationship between black holes and galaxies evolves with time; a key epoch to examine this relationship is at the peaks of star formation and black hole growth 8–12 billion years ago (redshifts 1–3) ⁷ . Here we report a dynamical measurement of the mass of the black hole in a luminous quasar at a redshift of 2, with a look back in time of 11 billion years, by spatially resolving the broad-line region (BLR). We detect a 40- μ as (0.31-pc) spatial offset between the red				
Su	per-Eddington BH	and blue photocentres of the H α line that traces the velocity gradient of a rotating SLR. The flux and differential phase spectra are well reproduced by a thick, moderately				
	超爱黑洞!	inclined disk of gas clouds within the sphere of influence of a central black hole with a mass of 3.2×10^8 solar masses. Molecular gas data reveal a dynamical mass for the host galaxy of 6×10^{11} solar masses, which indicates an undermassive black hole accreting at a super-Eddington rate. This suggests a host galaxy that grew faster than the SMBH,				

e black hole accreting at a super-Eddington rate. This suggests a host galaxy that grew faster than the SMBH, indicating a delay between galaxy and black hole formation for some systems.

重种子黑洞 ->超Eddington吸积->超大质量黑洞

How to form seed BHs?

Physics Reports 1054 (2024) 1-68

 $M[M_{\odot}]$

2、Masses and spins

Classical tool: reverberation mapping

Broad-line region: *R*-*L* relation

The empirical relation:

widely used for SMBH masses

from single epoch spectra

Questions:

- Luminous quasars?
- Accretion rates?
- SMBH numbers: binary?

Kaspi+(2000); Bentz et al. (2013)

Lijiang2.4m & CAHA2.2m: SEAMBH2012

(super-Eddington accreting massive black holes)

For fast growth of seed black holes to SMBH

Broken R-L relation \rightarrow New Relation

Radiated luminosity: Saturated (Du et al. 2015b)

✔ 经典模型:标准烛光 (Abramowicz et al. 1988; Wang et al. 2013)

✗ photon bubble 模型 (Begelman 2000)

★有MHD数值模拟结果 (CfA; Primceton) (Jiang et al. 2014; Sadowski & Narayan 2015)

 $[\]eta$ Carine (Shaviv2000)

Super-Eddington implication: SMBH formation

Heavy seed BHs: super-Eddington accretion

$$\dot{\mathcal{M}} = \dot{M}_{\bullet} / \dot{M}_{\text{Edd}} \sim 10^3 \qquad M_{\bullet} = M_{\text{seed}} \exp\left(\frac{1-\epsilon}{\epsilon} \frac{\dot{\mathcal{M}}t}{t_{\text{Salp}}}\right)$$

Mon. Not. R. Astron. Soc. 314, L17-L20 (2000)

Narrow-line Seyfert 1 galaxies and the evolution of galaxies and active galaxies

Smita Mathur Astronomy Department, The Ohio State University, Columbus, OH 43210, USA

Accepted 2000 March 6. Received 2000 March 6; in original form 2000 January 4

ABSTRACT

Narrow Line Seyfert 1 galaxies (NLS1s) are intriguing owing to their continuum as well as emission-line properties. The observed peculiar properties of the NLS1s are believed to be as a result of an accretion rate close to the Eddington limit. As a consequence of this, for a given luminosity, NLS1s have smaller black hole (BH) masses compared with normal Seyfert galaxies. Here we argue that NLS1s might be Seyfert galaxies in their early stage of evolution and as such may be low-redshift, low-luminosity analogues of high-redshift quasars. We propose that NLS1s may reside in rejuvenated, gas-rich galaxies. We also argue in favour of collisional ionization for production of Fe II in active galactic nuclei.

Key words: galaxies: active - galaxies: evolution - quasars: general - galaxies: Seyfert.

BH growth

• timescale:
$$t_{\bullet} = 0.13 (1 - \eta)^{-1} \left(\frac{\delta_{10}}{0.35}\right)^{-1} \left(\frac{\dot{\mathcal{M}}}{10}\right)^{-1} \text{Gyr.}$$

 $z \sim 7$: 0.8Gyr

OURNAL SUPPLEMENT SERIES, 80:109-135, 1992 May nomical Society. All rights reserved. Printed in U.S.A.

THE EMISSION-LINE PROPERTIES OF LOW-REDSHIFT QUASI-STELLAR OBJECTS

Strong Fe!

TODD A. BOROSON AND RICHARD F. GREEN Kitt Peak National Observatory, National Optical Astronomy Observatories, ¹ P.O. Box 26732, Tucson, AZ 85726 Received 1991 August 2; accepted 1991 October 14

JWST results (Yang+2023)

- Total fit J0244-5008 z=6.7306 - Power law - Pseudo continuum Total fit J0305-3150 z=6.6139 Power law Pseudo continuum - Total fit J2002-3013 z=6.6876 Power law Pseudo continum Observed wavelength (Å)

Rest-frame wavelength (Å) 4600 4800

J0226+0302 z=6.5405

5000

5200

4400

JSWT and SDSS quasars

Heavy seed ->Super-Eddington->SMBH

3C 273: breakthrough

Spatially resolved rotation of the broad-line region of a quasar at sub-parsec scale

https://doi.org/10.1038/s41586-018-0731-9

GRAVITY Collaboration*

SMBH masses: $(2.6 \pm 1.1) \times 10^8 M_{\odot}$

- SARM analysis
 - ➢ Precision SMBH masses
 - ➤Geometric distances of quasars
 - ➢High-quality 2D transfer functions: SMBH binaries

SARM : SpectroAstrometry + Reverberation Mapping

nature astronomy

LETTERS https://doi.org/10.1038/s41550-019-0979-5

A parallax distance to 3C 273 through spectroastrometry and reverberation mapping

Jian-Min Wang^{1,2,3*}, Yu-Yang Songsheng^{1,4}, Yan-Rong Li¹, Pu Du¹ and Zhi-Xiang Zhang⁵

Cosmic distances and masses

$$d = \frac{\Delta R}{\Delta \theta}; \qquad M_{\rm BH}$$

2m Telescope data \equiv VLTI data.

Cosmic distances of quasars: SARM results

 $D_{\rm A}({\rm Mpc}) = 551.50^{+97.31}_{-78.71} = \frac{\Delta D}{D} \sim 15\%$

Purely geometric measurements, independent of:

- extinction/reddening
- standardization
- cosmic ladders (Cepheids, SNIa)
- examinations of systematic errors

SARM is expected to expand sample

A&A 654, A85 (2021) https://doi.org/10.1051/0004-6361/202141426 © GRAVITY Collaboration 2021

2nd SARM results

A geometric distance to the supermassive black Hole of NGC 3783

GRAVITY Collaboration:* A. Amorim^{15,17}, M. Bauböck¹, M. C. Bentz²³, W. Brandner¹⁸, M. Bolzer¹, Y. Clénet²,
R. Davies¹, P. T. de Zeeuw^{1,13}, J. Dexter^{20,1}, A. Drescher^{1,22}, A. Eckart^{3,14}, F. Eisenhauer¹, N. M. Förster Schreiber¹,
P. J. V. Garcia^{11,16,17}, R. Genzel^{1,4}, S. Gillessen¹, D. Gratadour^{2,21}, S. Hönig⁵, D. Kaltenbrunner¹, M. Kishimoto⁶,
S. Lacour^{2,12}, D. Lutz¹, F. Millour⁷, H. Netzer⁸, C. A. Onken²¹, T. Ott¹, T. Paumard², K. Perraut⁹, G. Perrin²,
P. O. Petrucci⁹, O. Pfuhl¹², M. A. Prieto¹⁹, D. Rouan², J. Shangguan¹, T. Shimizu¹, J. Stadler¹, A. Sternberg^{8,10},
O. Straub¹, C. Straubmeier³, R. Street²⁴, E. Sturm¹, L. J. Tacconi¹, K. R. W. Tristram¹¹, P. Vermot²,
S. von Fellenberg¹, F. Widmann¹, and J. Woillez¹²

(Affiliations can be found after the references)

Received 29 May 2021 / Accepted 24 July 2021

SARM in collaboration

A&A 643, A154 (2020) https://doi.org/10.1051/0004-6361/202039067 © GRAVITY Collaboration 2020

A&A, 684, A167 (2024) https://doi.org/10.1051/0004-6361/202348167 © The Authors 2024

Astronomy Astrophysics

The spatially resolved broad line region of IRAS 09149-6206

GRAVITY Collaboration: A. Amorim^{19,21}, M. Bauböck¹, W. Brandner²², Y. Clénet², R. Davies¹, P. T. de Zeeuw^{1,17}, J. Dexter^{24,1}, A. Eckart^{3,18}, F. Eisenhauer¹, N. M. Förster Schreiber¹, F. Gao¹, P. J. V. Garcia^{15,20,21}, R. Genzel^{1,4}, S. Gillessen¹, D. Gratadour^{2,25}, S. Hönig⁵, M. Kishimoto⁶, S. Lacour^{2,16}, D. Lutz¹, F. Millour⁷, H. Netzer⁸, T. Ott¹, T. Paumard², K. Perraut¹², G. Perrin², B. M. Peterson^{9,10,11}, P. O. Petrucci¹², O. Pfuhl¹⁶, M. A. Prieto²³, D. Rouan², J. Shangguan^{1,*}, T. Shimizu¹, M. Schartmann¹, J. Stadler¹, A. Sternberg^{8,14}, O. Straub¹, C. Straubmeier³, E. Sturm¹, L. J. Tacconi¹, K. R. W. Tristram¹⁵, P. Vermot², S. von Fellenberg¹, I. Waisberg¹³, F. Widmann¹, and J. Woillez¹⁶

The size-luminosity relation of local active galactic nuclei from interferometric observations of the broad-line region*

GRAVITY Collaboration: A. Amorim^{1,2}, G. Bourdarot³, W. Brandner⁴, Y. Cao³, Y. Clénet⁵, R. Davies³, P. T. de Zeeuw⁶, J. Dexter^{3,7}, A. Drescher³, A. Eckart^{8,9}, F. Eisenhauer³, M. Fabricius³, H. Feuchtgruber³, N. M. Förster Schreiber³, P. J. V. Garcia^{2,10,11}, R. Genzel^{3,12}, S. Gillessen³, D. Gratadour^{5,13}, S. Hönig¹⁴, M. Kishimoto¹⁵, S. Lacour^{5,16}, D. Lutz³, F. Millour¹⁷, H. Netzer¹⁸, T. Ott³, T. Paumard⁵, K. Perraut¹⁹, G. Perrin⁵, B. M. Peterson^{22,**}, P. O. Petrucci¹⁹, O. Pfuhl¹⁶, M. A. Prieto²⁰, S. Rabien³, D. Rouan⁵, D. J. D. Santos³, J. Shangguan³, T. Shimizu³, A. Sternberg^{18,21}, C. Straubmeier⁸, E. Sturm³, L. J. Tacconi³, K. R. W. Tristram¹⁰, F. Widmann³, and J. Woillez¹⁶

Table 1. Physical properties of our four new targets and the three targets that were already observed by GRAVITY.

Object	RA (J2000)	Dec (J2000)	Z	$\log \lambda L_{\lambda} (5100 \text{ Å})$ (erg s^{-1})	Ref.	σ_* (km s ⁻¹)	Ref.	D _A (Mpc)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Mrk 509	20:44:09.738	-10:43:24.54	0.0344	44.19	1	182	8	144
PDS 456	17:28:19.796	-14:15:55.87	0.185	46.30	2	$182^{(1)}$	This work	657
Mrk 1239	09:52:19.102	-01:36:43.46	0.020	$44.40^{(2)}$	3	$\sim 250^{(3)}$	9	86
IC 4329A	13:49:19.266	-30:18:33.97	0.016	43.51	4	~225	9	69
3C 273	12:29:06.700	+02:03:08.60	0.158	45.90	1	210	10	582
NGC 3783	11:39:01.762	-37:44:19.21	0.0097	43.02	6	95	11	42
IRAS 09149-6206	09:16:09.39	-62:19:29.90	0.0573	44.92d	5,7	$250^{(4)}$	7	236
© 2021. The American Astronomical Society. All rights reserved.

Geometric Distances of Quasars Measured by Spectroastrometry and Reverberation **Mapping: Monte Carlo Simulations**

Yu-Yang Songsheng^{1,2}, Yan-Rong Li¹, Pu Du¹, and Jian-Min Wang^{1,2,3} ¹ Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Beijing 100049, People's Republic of China; wangjm@ihep.ac.cn

² University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, People's Republic of China

³ National Astronomical Observatories of China, Chinese Academy of Sciences, 20A Datun Road, Beijing 100020, People's Republic of China

Received 2020 November 25; revised 2021 January 28; accepted 2021 February 9; published 2021 April 13

Big question : Cosmic dynamics

"quantum born"

Max Planck

"new physics born?"

Adams Riess

Results:

$\underset{(2016)}{\text{Hitomi}} \rightarrow \text{XRISM}$

X-ray Imaging and Spectroscopy Mission

EPISODIC RANDOM ACCRETION AND THE COSMOLOGICAL EVOLUTION OF SUPERMASSIVE BLACK HOLE SPINS

JIAN-MIN WANG^{1,2}, CHEN HU¹, YAN-RONG LI¹, YAN-MEI CHEN¹, ANDREW R. KING³, ALESSANDRO MARCONI⁴, LUIS C. Ho⁵, CHANG-SHUO YAN¹, RÜDIGER STAUBERT⁶, AND SHU ZHANG¹

Cosmic evolution of spins:
$$\eta^{-1} = 1 + \frac{c^2}{\dot{U}} \left(\frac{dt}{dz}\right)^{-1} \frac{d}{dz} \left(\frac{\rho_{\bullet}^{\text{qso}}}{\delta}\right).$$

3、SMBH binaries and nano-Hz GWs

CPTA基于FAST给出 纳赫兹引力波存在的证据

How Supermassive Black Holes Are Born

The heart of most Milky Way-like galaxies holds a black hole weighing billions of solar masses. Astrophysicists have two main ideas for how these monstrosities got so huge.

The resulting supermassive black hole anchors a large galaxy. Dwarf galaxies, by contrast, are thought to resemble earlier steps in the growth process.

The first stars become black holes weighing dozens of solar masses.

STARS

FIRST

A gas cloud collapses directly

DIRECT

COLLAPSE

These "small seeds" grow improbably quickly, through

SMBH binaries: orbital parameters?

PIA · **CB**-SIVIBHS TOR GWs (Songsheng+2021)

 $Z \models Z' \\ \text{line of sight}$

 $V_{\rm orb}$

Kinematic Signatures of Reverberation Mapping of Close Binaries of Supermassive Black Holes in Active Galactic Nuclei

Jian-Min Wang^{1,2,3}, Yu-Yang Songsheng^{1,2}, Yan-Rong Li¹, and Zhe Yu^{1,2}

Blandford & McKee(1982): 2D-transfer functions of a single BLR

1

For binary BLRs

$$Z_2$$

 Y_2
 Z_2
 Y_2
 Z_2
 Z_2

$$\Psi(v, t) = \frac{1}{2\pi} \mathscr{F}^{-1} \left[\frac{\tilde{L}_{\ell}(v, \omega)}{\tilde{L}_{c}(v, \omega)} \right],$$
$$\tilde{L}_{\ell,c} = \mathscr{F} [L_{\ell,c}(v, t)],$$

$$\Psi_{\text{tot}}(v, t) = \frac{\Psi_1(v, t)}{1 + \Gamma_0} + \frac{\Psi_2(v, t)}{1 + \Gamma_0^{-1}},$$

Songsheng+(2020); Kovacevic+(2020)

A single BLR

RM: 2D transfer functions (Wang+2018; Songsheng+2019; Kovacevic+2019) Offsets are due to orbital motion

Wyoming IR Observatory 2.3m: MAHA since 2017 (Monitoring AGNs with H β Asymmetry)

Sample: ~100 AGNs

For SMBH binaries

Signals: GRAVITY/VLTI (Songsheng+2019, Kovacevic+2020)

More complicated signals see Kovacevic+2020

VLTI (25hours): Akn 120

4、Satellite BHs of SMBH: observational consequences

Formation of AGN structure

Observations of variations : lines and continuum

THE ASTROPHYSICAL JOURNAL, 409: 592–603, 1993 June 1 © 1993. The American Astronomical Society. All rights reserved. Printed in U.S.A.

STAR TRAPPING AND METALLICITY ENRICHMENT IN QUASARS AND ACTIVE GALACTIC NUCLEI¹

PAWEŁ ARTYMOWICZ,^{2,3} D. N. C. LIN,^{2,4} AND E. JOSEPH WAMPLER⁵ Received 1992 August 3; accepted 1992 December 7

Metal-rich BLR:: stars inside accretion disks?

THE ASTROPHYSICAL JOURNAL, 521:502–508, 1999 August 20 © 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A.

THE FORMATION AND MERGER OF COMPACT OBJECTS IN THE CENTRAL ENGINE OF ACTIVE GALACTIC NUCLEI AND QUASARS: GAMMA-RAY BURST AND GRAVITATIONAL RADIATION

K. S. CHENG

Physics Department, University of Hong Kong, Hong Kong, People's Republic of China

AND

JIAN-MIN WANG

Astronomy Department, Beijing Normal University, Beijing 100875; Astronomy Department, Nanjing University, Nanjing 210008; and Chinese Academy of Sciences-Peking University Joint Beijing Astrophysical Center (CAS-PKU.BAC), Beijing 100871, People's Republic of China Received 1998 October 7; accepted 1999 April 1

Prediction: GRB, Compact objects and GWs

预言21年后观测:初步证据

PHYSICAL REVIEW LETTERS 124, 251102 (2020)

Editors' Suggestion Featured in Physics

Candidate Electromagnetic Counterpart to the Binary Black Hole Merger Gravitational-Wave Event S190521g*

M. J. Graham[©],^{1,†} K. E. S. Ford,^{2,3,4} B. McKernan,^{2,3,4} N. P. Ross,⁵ D. Stern,⁶ K. Burdge,¹ M. Coughlin,^{7,8} S. G. Djorgovski,¹ A. J. Drake,¹ D. Duev,¹ M. Kasliwal,¹ A. A. Mahabal,¹ S. van Velzen,^{9,10} J. Belecki,¹¹ E. C. Bellm,¹² R. Burruss,¹¹ S. B. Cenko,^{13,14} V. Cunningham,⁹ G. Helou,¹⁵ S. R. Kulkarni,¹ F. J. Masci,¹⁵ T. Prince,¹ D. Reiley,¹¹ H. Rodriguez,¹¹ B. Rusholme,¹⁵ R. M. Smith,¹¹ and M. T. Soumagnac^{16,17}

ZTF detection of quasar flare J124942.3 + 344929 at z = 0.438 (Graham+2019)

54

LIGO detection of GW 190521

AGN accretion disks: compact objects

THE ASTROPHYSICAL JOURNAL, 937:61 (12pp), 2022 October 1

© 2022. The Author(s). Published by the American Astronomical Society.

https://doi.org/10.3847/1538-4357/ac8163

Potential Signature of Population III Pair-instability Supernova Ejecta in the BLR Gas of the Most Distant Quasar at $z = 7.54^*$

Yuzuru Yoshii^{1,2}, Hiroaki Sameshima¹, Takuji Tsujimoto³, Toshikazu Shigeyama⁴, Timothy C. Beers⁵, and Bruce A. Peterson⁶
 ¹ Institute of Astronomy, School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015, Japan; yoshii@ioa.s.u-tokyo.ac.jp
 ² Steward Observatory, University of Arizona, 933 North Cherry Avenue, Room N204, Tucson, AZ 85721-0065, USA
 ³ National Astronomical Observatory of Japan, Mitaka-shi, Tokyo 181-8588, Japan
 ⁴ Research Center for the Early universe, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
 ⁵ Department of Physics and JINA Center for the Evolution of the Elements (JINA-CEE), University of Notre Dame, IN 46556, USA
 ⁶ Mount Stromlo Observatory, Research School of Astronomy and Astrophysics, Australian National University, Weston Creek P.O., ACT 2611, Australia Received 2021 August 13; revised 2022 July 12; accepted 2022 July 13; published 2022 September 28

z=7.54, cosmic age: 0.7Gyr; Fe abund.: 20 solar

Cosmic evolution of abundance?

Star formation and evolution :

- AGN structure
- Metallicity
- Compact objects
- Gravitational waves

Self-gravitating disk: AGN structure? (2009-)

THE ASTROPHYSICAL JOURNAL, 746:137 (27pp), 2012 February 20 © 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

STAR FORMATION IN SELF-GRAVITATING DISKS IN ACTIVE GALACTIC NUCLEI. II. EPISODIC FORMATION OF BROAD-LINE REGIONS

THE ASTROPHYSICAL JOURNAL, 739:3 (11pp), 2011 September 20

. © 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

STAR FORMATION IN SELF-GRAVITATING DISKS IN ACTIVE GALACTIC NUCLEI. I. METALLICITY GRADIENTS IN BROAD-LINE REGIONS

THE ASTROPHYSICAL JOURNAL LETTERS, 719:L148–L152, 2010 August 20

© 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

doi:10.1088/0004-637X/739/1/3

ACCRETION DISKS IN ACTIVE GALACTIC NUCLEI: GAS SUPPLY DRIVEN BY STAR FORMATION

THE ASTROPHYSICAL JOURNAL, 701:L7–L11, 2009 August 10 © 2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

doi:10.1088/0004-637X/701/1/L7

doi:10.1088/2041-8205/719/2/L148

EVOLUTION OF GASEOUS DISK VISCOSITY DRIVEN BY SUPERNOVA EXPLOSIONS IN STAR-FORMING GALAXIES AT HIGH REDSHIFT

THE ASTROPHYSICAL JOURNAL, 954:84 (33pp), 2023 September 1

 $\ensuremath{\mathbb{C}}$ 2023. The Author(s). Published by the American Astronomical Society.

OPEN ACCESS

Star Formation in Self-gravitating Disks in Active Galactic Nuclei. III. Efficient Production of Iron and Infrared Spectral Energy Distributions

doi:10.1088/0004-637X/746/2/137

◆ Graham et al (2022): 9 others (LIGO/Virgo during O3) .

Samsing+(2022) sMBHs: Observational consequences?

Accretion-modified Stars (AMS) 统一名词

Wang et al. 2021, ApJL911, L14

- Bondi吸积率~10⁹L_{Edd}/c².
- 吸积时标: t_a~10⁵m₁s.
- 强大外流: 10倍超新星.

- Bondi爆炸:从射电宁静到中等射电强跃变.
- EIC: 峰值≈40 GeV Fermi-LAT可以探测.

THE ASTROPHYSICAL JOURNAL LETTERS, 916:L17 (11pp), 2021 August 1 © 2021. The American Astronomical Society. All rights reserved. https://doi.org/10.3847/2041-8213/ac0b46

Accretion-modified Stars in Accretion Disks of Active Galactic Nuclei: Gravitational-wave Bursts and Electromagnetic Counterparts from Merging Stellar Black Hole Binaries

Jian-Min Wang^{1,2,3}, Jun-Rong Liu^{1,2}, Luis C. Ho^{4,5}, Yan-Rong Li¹, and Pu Du¹

Jacobi capture

AMS: radio、γ-rays
slow transients
Merger rates: a few per year
LIGO: 10²Hz GWs

THE ASTROPHYSICAL JOURNAL LETTERS, 958:L40 (13pp), 2023 December 1 © 2023. The Author(s). Published by the American Astronomical Society.

OPEN ACCESS

https://doi.org/10.3847/2041-8213/ad0bd9

Accretion-modified Stars in Accretion Disks of Active Galactic Nuclei: The Lowluminosity Cases and an Application to Sgr A*

Jian-Min Wang^{1,2,3}, Jun-Rong Liu^{1,4}, Yan-Rong Li¹, Yu-Yang Songsheng¹, Ye-Fei Yuan⁵, and Luis C. Ho^{6,7}

MNRAS 520, 4502-4516 (2023) Advance Access publication 2023 February 7

of the

Accretion-modified stellar-mass black hole distribution and milli-Hz gravitational wave backgrounds from galaxy centre

Mengye Wang,¹ Yiqiu Ma²* and Qingwen Wu^{®1}*

 $\frac{\partial f(E, J, m)}{\partial t} + \nabla \cdot [f(E, J, m)\boldsymbol{v}] = \text{collision terms},$

THE ASTROPHYSICAL JOURNAL, 954:84 (33pp), 2023 September 1 © 2023. The Author(s). Published by the American Astronomical Society.

OPEN ACCESS

Star Formation in Self-gravitating Disks in Active Galactic Nuclei. III. Efficient Production of Iron and Infrared Spectral Energy Distributions

Jian-Min Wang^{1,2,3}, Shuo Zhai^{1,4}, Yan-Rong Li¹, Yu-Yang Songsheng¹, Luis C. Ho^{5,6}, Yong-Jie Chen^{1,4}, Jun-Rong Liu^{1,4}, Pu Du¹, and Ye-Fei Yuan⁷

Evolution of stellar population?

Mass function

$$\frac{\partial}{\partial t}\Psi(m_*, t) + \frac{\partial}{\partial m_*}[\dot{m}_*\Psi(m_*, t)] = -\dot{\mathcal{R}}_{\rm SN}(m_*, t) + \dot{\mathcal{S}}_{\rm AD}(m_*, t),$$

$$\dot{m}_* = \dot{m}_{\rm ac} - \dot{m}_{\rm w}$$

Stars: accretion and stellar winds

Mass function: pile-up $\dot{m}_* = \dot{m}_{ac} - \dot{m}_{w}$

Iron abundance

Problems : Form. & Evo of Stars and Radiation

- Massive stars in AGN disks: element yields and compact objects
- Interaction between stars and the disk
- Binaries: compact-compact, star-comp, merger, TDE
- Accretion-modified stars:
 - ≻What is star ?
 - ≻Outflow-driven cavity
- AMS feedback: AGN structure formation
- GWs: LIGO、 LISA、 PTA

5、Opportunities of JWST & VLTI Era

早期宇宙中:小红点

Article

A population of red candidate massive galaxies ~600 Myr after the Big Bang

https://doi.org/10.1038/s41586-023-05786-2 Received: 25 July 2022	Ivo Labbé ^{1⊡} , Pieter van Dokkum², Erica Nelson², Rachel Bezanson⁴, Katherine A. Suess ^{se} , Joel Leja ^{xaø} , Gabriel Brammer [®] , Katherine Whitaker ^{ian} , Elijah Mathews ^{7a,e} , Mauro Stefanon ¹²¹³ & Bingjie Wang ^{7a,e}				
Accepted: 2 February 2023					
Published online: 22 February 2023 Check for updates	Galaxies with stellar masses as high as roughly 10 ¹¹ solar masses have been identified ¹⁻³ out to redshifts <i>z</i> of roughly 6, around 1 billion years after the Big Bang. It has been difficult to find massive galaxies at even earlier times, as the Balmer break region, which is needed for accurate mass estimates, is redshifted to wavelengths beyond 2.5 µm. Here we make use of the 1–5 µm coverage of the James Webb Space Telescope early release observations to search for intrinsically red galaxies in the first roughly 750 million years of cosmic history. In the survey area, we find six candidate massive galaxies (stellar mass more than 10 ¹⁰ solar masses) at 7.4 ≤ $z \le 9.1$, 500–700 Myr after the Big Bang, including one galaxy with a possible stellar mass of roughly 10 ¹¹ solar masses. If verified with spectroscopy, the stellar mass density in massive galaxies would be much higher than anticipated from previous studies on the basis of rest-firma ultraviolaties eaperde				

F606W	F814W	F115W	F150W	F200W	F277W	F356W	F410W	F444W	
11184 =	-	-1	-1			-	-•	-•	
38094 —	÷.		-1-		-	-	-	-	•
13050 — I	-	The second se		= 1	-		in the second se		•
2859 	71	-1	-1	-1		- -	-		
14924 — I	-1	- i *	-1	-1-		-1	-•*	-•	•
35300 - I	- 1	- 1	-1		-;•	-1		-•	

DRAFT VERSION JUNE 14, 2023 Typeset using LATEX twocolumn style in AASTeX63

arXiv:2306.07320v1 [astro-ph.GA] 12 Jun 2023

UNCOVER: Candidate Red Active Galactic Nuclei at 3 < z < 7 with JWST and ALMA

IVO LABBE,¹ JENNY E. GREENE,² RACHEL BEZANSON,³ SEIJI FUJIMOTO,^{4,*} LUKAS J. FURTAK,⁵ ANDY D. GOULDING,² JORRYT MATTHEE,⁶ ROHAN P. NAIDU,^{7,8,†} PASCAL A. OESCH,^{9,10} HAKIM ATEK,¹¹ GABRIEL BRAMMER,¹⁰ IRYNA CHEMERYNSKA,¹¹ DAN COE,^{12, 13, 14} SAM E. CUTLER,¹⁵ PRATIKA DAYAL,¹⁶ ROBERT FELDMANN,¹⁷ MARIJN FRANX,¹⁸ KARL GLAZEBROOK,¹ JOEL LEJA,^{19,20,21} MICHAEL MASEDA,²² DANILO MARCHESINI,²³ THEMIYA NANAYAKKARA,¹ ERICA J. NELSON,²⁴ RICHARD PAN,²³ CASEY PAPOVICH,^{25,26} SEDONA H. PRICE,³ KATHERINE A. SUESS,^{27,28} BINGJIE WANG (王冰洁),^{19,20,21} JOHN R. WEAVER,¹⁵ KATHERINE E. WHITAKER,^{15,10} CHRISTINA C. WILLIAMS,^{29,30} AND A DI ZITRIN⁵

THE ASTROPHYSICAL JOURNAL, 964:39 (18pp), 2024 March 20 © 2024. The Author(s). Published by the American Astronomical Society

https://doi.org/10.3847/1538-4357/ad1e5f

OPEN ACCESS

UNCOVER Spectroscopy Confirms the Surprising Ubiquity of Active Galactic Nuclei in Red Sources at z > 5

Jenny E. Greene¹, Ivo Labbe², Andy D. Goulding¹, Lukas J. Furtak³, Iryna Chemerynska⁴, Vasily Kokorev⁵, Pratika Dayal⁵⁽⁰⁾, Marta Volonteri⁴⁽⁰⁾, Christina C. Williams^{6,7}⁽⁰⁾, Bingjie Wang (王冰洁)^{8,5,10}⁽⁰⁾, David J. Setton^{1,31}⁽⁰⁾, Adam J. Burgasser¹¹⁽⁰⁾, Rachel Bezanson¹²⁽⁰⁾, Hakim Atek⁴⁽⁰⁾, Gabriel Brammer¹³⁽⁰⁾, Sam E. Cutler¹⁴⁽⁰⁾, Robert Feldmann¹⁵⁽⁰⁾, Seiji Fujimoto^{16,32}, Karl Glazebrook¹⁷, Anna de Graaff¹⁸, Gourav Khullar¹², Joel Leja^{8,9,10}, Danilo Marchesini¹⁹, Michael V. Maseda²⁰, Jorryt Matthee^{21,22}, Tim B. Miller^{23,24}, Rohan P. Naidu^{25,33}, Themiya Nanayakkara¹⁷, Pascal A. Oesch^{13,26}, Richard Pan¹⁹, Casey Papovich^{27,28}, Sedona H. Price¹², Pieter van Dokkum²⁹, Pieter van Pieter John R. Weaver¹⁴, Katherine E. Whitaker^{14,30}, and Adi Zitrin³

THE ASTROPHYSICAL JOURNAL, 963:129 (28pp), 2024 March 10 © 2024. The Author(s). Published by the American Astronomical Society **OPEN ACCESS**

https://doi.org/10.3847/1538-4357/ad2345

Little Red Dots: An Abundant Population of Faint Active Galactic Nuclei at $z \sim 5$ **Revealed by the EIGER and FRESCO JWST Surveys**

Jorryt Matthee^{1,2}, Rohan P. Naidu^{3,23}, Gabriel Brammer⁴, John Chisholm⁵, Anna-Christina Eilers³, Andy Goulding⁶, Jenny Greene⁶, Daichi Kashino^{7,8}, Ivo Labbe⁹, Simon J. Lilly¹, Ruari Mackenzie¹, Pascal A. Oesch^{4,10}, Andrea Weibel¹⁰, Stijn Wuyts¹¹, Mengyuan Xiao¹⁰, Rongmon Bordoloi¹², Rychard Bouwens¹³, Pieter van Dokkum¹⁴[®], Garth Illingworth¹⁵[®], Ivan Kramarenko¹⁰[®], Michael V. Maseda¹⁶[®], Charlotte Mason^{4,17}[®], Romain A. Meyer^{10,18}[®], Erica J. Nelson¹⁹[®], Naveen A. Reddy²⁰[®], Irene Shivaei^{21,22}[®], Robert A. Simcoe³[®], and Minghao Yue³

Density : 100-500 times quasar LF

• SED : V-shaped

Early phase of Universe : various stages

J0100-16221

$$\label{eq:MBH} \begin{split} M_{BH} &\sim 10^7 \; M_\odot \\ v_{FWHM,broad} &\sim 1500 \; km \; s^{\text{-1}} \\ L_{broad}/L_{Tot} &\sim 0.2 \end{split}$$

 $\begin{array}{l} M_{BH} \thicksim 5x10^7 \ M_{\odot} \\ \mathbf{v}_{\mathrm{FWHM, broad}} \thicksim 2000 \ km \ s^{-1} \\ \mathbf{L}_{\mathrm{broad}}/\mathbf{L}_{\mathrm{Tot}} \thicksim 0.5 \end{array}$

J1148-18404

2: Transition into AGN 3: Dusty AGN dominates

A LOS M

 $\begin{array}{l} M_{BH} \thicksim 2x10^8 \ M_\odot \\ v_{FWHM,broad} \thicksim 3500 \ km \ s^{-1} \\ L_{broad}/L_{Tot} \thicksim 0.8 \end{array}$

Labbe+2023/4

Matthee+2024

Mon. Not. R. astr. Soc. (1985) 213, 841-856

Warmers: the missing link between Starburst and Seyfert galaxies

Roberto Terlevich Royal Greenwich Observatory, Herstmonceux Castle, Hailsham, East Sussex BN27 IRP

Jorge Melnick Universidad de Chile, Santiago, Chile

Accepted 1984 December 2. Received 1984 November 23; in original form 1984 August 22

Mon. Not. R. astr. Soc. (1992) 255, 713-728

The starburst model for active galactic nuclei: the broad-line region as supernova remnants evolving in a high-density medium

Roberto Terlevich,¹ Guillermo Tenorio-Tagle,² Jose Franco³ and Jorge Melnick⁴

¹Royal Greenwich Observatory, Madingley Road, Cambridge, CB3 0EZ
²Instituto de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Spain
³Instituto de Astronomía UNAM, Apartado Postal 70-264, 04510 México D. F., México
⁴European Southern Observatory, Casilla 19001, Santiago, Chile

Mon. Not. R. Astron. Soc. 272, 198-212 (1995)

The starburst model for active galactic nuclei - II. The nature of the lag

R. Terlevich,¹ G. Tenorio-Tagle,² M. Różyczka,³ J. Franco⁴ and J. Melnick⁵

Royal Greenwich Observatory, Madingley Road, Cambridge CB3 0EZ

² Instituto de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Spain

³ Warsaw University Observatory, Al. Ujazdowskie 4, Pl-00478 Warszawa, Poland

⁴ Instituto de Astronomía UNAM, Apartado Postal 70-264, 04510 México DG, México

⁵European Southern Observatory, Casilla 19001, Santiago, Chile

Forthcoming silent revolution: GWs

• SMBH accretion disk : changed

stars/compact objects

• Starburst: new roles?

LIGO观测计划

In future 5-yrs : GRAVITY+ (300-500 quasars)

The Very Large Telescope in 2030 GRAVITY +: Towards faint science, all sky milliarcsec optical interferometric imaging **Improved Sensitivity** Ready to Go R. Genzel **Off Axis Tracking** Adaptive Optics **Laser Guide Stars**

Considerations for the Future of Optical Interferometry at the VLT

Active Galactic Nuclei – at Cosmic Noon

Lookback time (Gyr)

GRAVITY+ core sciences :

- *z*=2-3 SMBH
- Cosmic distances :

expansion history/dark energy

• SMBH binaries: nano-Hz GWs

GRAVITY+科学白皮书 https://www.mpe.mpg.de/7480772/GRAVITYplus_WhitePaper.pdf

Remaks :

- •SMBH : SEABHs ; seed: stellar or primordial BHs ?
- •SARM: quasar as probe of Universe
- •SMBH binaries : PTA observations
- •AGN structure formation :

stellar evolution in dense environment

•LIGO GWs: AGN SED and variations

