Massive Spectroscopic Surveys & Fibre Positioner Robots

Prof. Jean-Paul KNEIB

legacysurvey.org

European Research Council KTI/CTI DIE FÖRDERAGENTUR FÜR INNOVATION L'AGENCE POUR LA PROMOTION DE L'INNOVATION L'AGENZIA PER LA PROMOZIONE DELL'INNOVAZIONE

Outline

Motivation

- Precision cosmology from galaxy redshift surveys: quest of dark energy and neutrino masses
- Ast**ro**bots: fiber positionning
- Outlook for massive redshift surveys

Massive Spectroscopic Surveys

1916: General Relativity = Gravitation force by Einstein

<u>**Gravitation</u>** = deformation of Space-Time by the existence of Matter.</u>

G: gravitational constant. c: speed of light

 Λ : cosmological constant.

 $G_{\mu\nu}$ - $\Lambda g_{\mu\nu}$

Gravitation-Metric

Mass/Energy

<u>1924</u>:

Friedman-Lemaître Equations describe the evolution of the Universe depending on its content

Edwin Hubble (1929): First clues on the expansion of the Universe Penzias & Wilson (1965)

Confirmation of the expansion with detection of CMB

Woody Allen in Annie Hall (1977)

2003: <u>Precise</u> measurement of the CMB

- •Temperature fluctuations (Δ T~10⁻⁵) are the seed of structure formation in the Universe.
- The size of the fluctuation is directly linked to the curvature of the Universe.
 - Our Universe is flat !

2006: Nobel Prize

Massive Spectroscopic Surveys

Jean-Paul Kneib - Tsinghua - January 2020

The Dark Side of the Universe

TODAY

95% of the Mass-Energy content of the Universe is unknown!

24% of Dark Matter - non identified particles

71% of Dark Energy - non identified nature

Massive Spectroscopic Surveys

Understanding the accelerated expansion of the Universe

- Origin of the accelerated expansion? (many theories)
 - **Dark Energy** ? a new unknown component (probe its nature: eq. of state)
 - **Modified Gravity** ? correction of General Relativity on large scales
 - Fractal Geometry/Scale Relativity??
- No good/simple/unique theory: pragmatic approach need new observations => precision cosmology: requires measurement better than % level and not just at CMB redshift ideally at any redshift ! => NEED DATA

emperature fluctuations [µK²

Mapping the Large Scale Structures and cosmological constraints

The acoustic fluctuations in the CMB is also seen in the distribution of galaxies. The best technique to constrain the expansion of the Universe.

Power Spectrum of Galaxy distribution

Massive Spectroscopic Surveys

Baryonic Acoustic Oscillations (BAO)

- In the early universe: density fluctuations propagates like an acoustic wave.
- Measured in the CMB (z~1100)
- Spatial wavelength of ~140 Mpc (400 M.LY) at recombination
- Galaxy formation stronger in high-density region.
- Measuring BAO scale in the distribution of galaxies give the relations H(z) and D_A(z) => expansion

Redshift Space Distortion

Redshift Space Distorsion

2D correlation fonction: parallel & perpendicular to the sky direction.

the size of the black ellipse is a measure of RSD at a given redshift.

RSD sensitive to growth of structure = gravitation model.

Massive Spectroscopic Surveys

Complementarity: Expansion & Gravitation

- Combining BAO and RSD is a precise method to constrain the accelerated expansion:
 - •Dark Energy
 - Modified Gravity

Higher order statistics !

Zhao et al. 2016, MNRAS, 459, 2670

Delaunay Triangulation (DT) Wikipedia

Dots: haloes Open circles: centres of voids

cosmology independent

~10 minutes for 5.5 million haloes with a single CPU core

Massive Spectroscopic Surveys

First void BAO detection

BOSS DR11 data

2PCF: galaxy + void

Black: Galaxy alone Blue (almost no BAO): Galaxy + positive weighted void Red (stronger BAO than that of galaxy): Galaxy + negative weighted void

The curves are rescaled such that the error on the BAO peak are the same.

Zhao et al. 2019, in preparation

Massive Spectroscopic Surveys

Jean-Paul Kneib - Tsinghua - January 2020

Joint BAO measurement with BOSS data

For the mocks, error reduced by an average of ~10% ~18% better BAO scale determination for the low-z BOSS DR12 data

Zhao et al. 2019, in preparation

3D mapping of galaxies

- Hubble (1930): Expansion of the Universe
- CfA Redshift Survey (1985): first large scale structures
- 2dF (~2000): 1500 deg²
- SDSS-I-II (~2005): 5700 deg²
- VVDS/DEEP2 (~2004): Deep universe
 ~1 deg²
- LAMOST (~2008): 8000 deg² 6.3million
- WiggleZ (2011): 800 deg² BAO
- VIPERS (2012): 25 deg² RSD
- SDSS-III/BOSS (2009-2014): 10,000 deg² BAO/LSS - 1.5 million
- e-BOSS (2014-2019) 1.1 million
- **PFS** (2020) ~3 million
- **DESI** (2020) ~35 million
- **EUCLID** (2022) ~50 million
- **4MOST** (2022) ~8 million
- **SPHEREx** (2023) ~50 million?
- **SKA-I** (2026) ~100+ million?
- New Project (2030?) 200+ million?

LAMOST

- Construction (2001-2008)
- ~4m aperture
- 5 deg FOV
- 4'000 fiber robots
- But poor seeing site limiting the interest for extragalactic science.
- The LEGAS was not implemented, but very productive MW survey.

Sloan telescope & BOSS spectrograph

- Aluminum plate of 90 cm with 1000 holes,
- 45 min to insert 1000 fibers for ~1 hour observation
- up to 9 plates per night
- 1.5 millions redshift measurement in ~4 years

SDSS-III / BOSS (2009-2014)

Goals of eBOSS

Understanding our Cosmological world model:

- Are we leaving in a Lambda-CDM Universe?
- What is Dark Energy?
- Do we understand Gravitation on Large Scales? link with DM?
- Neutrino Masses?
- Non-Gaussianities and inflationary models?

Cosmic microwave background

Size of our Milky Way

Position of most distant observed object (Z=10.3)

Most complete mapping

of observed universe

s billion years ago 10 billion years ago

DEUS simulation

13 billion years ago

Size of the observable universe : 90 billion light years

eBOSS QSOs

Huge QSO Science Legacy

Myers et al QSO selection

Jean-Paul Kneib - Tsinghua - January 2020

SDSS-IV/eBOSS - 2017 results

BAO detection with 200k Quasars over ~2100 deg² at z~1.5 - 2.8 sigma detection

Massive Spectroscopic Surveys

SDSS-IV/eBOSS - 2018 results

BAO detection with BOSS/CMASS+eBOSS/LRG z~0.72 - 2.8 sigma detection

Massive Spectroscopic Surveys

SDSS-IV/eBOSS - 2018+ results

Sloan-DR14: July 2017; DR16: end 2019

• BAO peak:

- 170'000 quasars at z~1.5 over 1800 deg² - 3.5% BAO uncertainty
- 125'000 LRGs+CMASS at z>0.6 over 1800 deg² we measure a ~2.6% BAO uncertainty on D_V
- ELG obs. finished 2018: 189,000 ELGs with reliable z, 0.7<z<1.1) over >1000 deg² - mean redshift: z~0.85

eBOSS ELG survey

- 255,000 targets based on DECaLS grz color box => 189,000 ELGs for BAO (reliable z, 0.7<z<1.1) over >1000 deg² - mean redshift: z~0.85
- efficiency = N[ELGs for BAO] / N[observed] \ge 74%
- eBOSS ELG survey completed 2018 => thorough analysis, results to be published beginning 2010

Massive Spectroscopic Surveys

eBOSS results vs. Simulations

BAO progress over last 10 years

Massive Spectroscopic Surveys

Jean-Paul Kneib - Tsinghua - January 2020

31

BAO progress over last 10 years

Massive Spectroscopic Surveys

FUTURE Massive Spectroscopic Surveys

Massive Spectroscopic Surveys

Numerous projects of 3D mapping of the Universe:

- eBOSS (2014-2020): continuation of BOSS
- DESI (2020-23): 4m telescope, 5000 fibers
- ESO/4MOST (2022-27): 4m telescope, 2400 fibers
- Euclid (2022-26): space mission
- SPHEREx (2023-24): space mission
- SKA (2027++): radio telescope
- New Redshift machine? (~2027++)

Dark Energy Spectroscopic Instrument (2019-2024)

Massive Spectroscopic Surveys

Jean-Paul Kneib - Tsinghua - January 2020

BOSS HETDEX Euclid 50m

WFIRST-2.4

DESI Fiber Positioners

ENERGY Joseph H. Silber

11/14/2017 4 ENGINEERING DIVISION

BERKELEY LAB

500 (out of 5000) fibre-positioner robots

6 (out of 10) 3-arm spectrograph

DESI vs. SDSS spectra

DESI vs. SDSS spectra

VLT-MOONS (2021-2026)

- Approved project by ESO in 2014: IR spectrograph for the 8m VLT (1000 fibers) first light end 2021.
- Science: formation & evolution of galaxies
- ~I million of galaxies to be observed between I<z<7.
- U. Edinburgh lead of the project
- EPFL helped on the fiber positionner system (with U. of Edinburgh) and collision free navigation.

SDSS-V massive spectroscopy

- Project SDSS-V started Sept. 2017
- 2 telescopes (New-Mexico+Chili), 1000 robots
- Quick tech project to be on sky Fall 2020.
- EPFL responsible of the robotic fiber positioning system
- Science: Multi-epoch spectroscopy+AGN+Cluster Galaxies+ Transients

4MOST (2022-2027)

• Complementary to DESI in the North

• Complementary to Euclid in redshift+WL cross-correlation

• Cross-Correlation with HI radio-map+CMB

Cosmology survey will gather ~8 million of spectra of galaxy and AGNs

 Messenger White paper: Richard et al. 2019 <u>astro-ph/1903.02474</u>

Massive Spectroscopic Surveys

Jean-Paul Kneib - Tsinghua - January 2020

4MOST Redshift distributions

Euclid: a survey machine driven by cosmology

DESI/4MOST/Euclid

2026: ~100 million redshifts 0<z<3 over ~20'000 sqdeg.

SPHEREX (2023-24)

SPHEREX HOME

Home 2016 Workshop 2018 Workshop

Massive Spectroscopic Surveys

Jean-Paul K

Redshift, z

Future massive spectroscopic surveys

- Most of the cosmological information can be found in the Power Spectrum.
- How many redshift measurements to reach the maximum of information?
- Use of many tracers (galaxies/quasars)

Can we measure ~billion of redshifts?

New Project(s) ?

- What project after? MSE, DESI-2, SpecTel, LOT?
- Larger telescope!! 10-12m telescope (yet to be build)
- Likely larger multiplexing: >=5'000, possibly ~15'000 (if ~7mm diameter fibre positioned robots)
- Science interest goes beyond just cosmology ... also mapping the Milky Way, counterpart of GW/GRB events
 - Affordable telescope, spectrograph, detectors?
 - Smaller fiber positionner robots?

New Project(s) ?

- MaunaKea Spectroscopic Explorer (MSE) <u>http://</u> mse.cfht.hawaii.edu/ (2028?)
 - Replace the 3.6m CFHT telescope in Hawaii, by a ~I Im diameter telescope; >3200 fibers
- US/NSF+DOE plans follow-up of LSST
 - check e.g.: <u>https://kicp-workshops.uchicago.edu/</u> **FutureSurveys/** - **Dodelson et al 2016**
- LOT, 12m Chinese telescope, but more an observatory
- **ESO Plans**: Brainstorm led by Richard Ellis
 - New telescope designs suitable for massivelymultiplexed spectroscopy: Pasquini et al 2016, Ellis et al 2017

• MEGAMAPPER ?

MSE

Massive Spectroscopic Surveys

MegaMapper

Astro2020 APC White Paper

The MegaMapper: a z > 2 spectroscopic instrument for the study of Inflation and Dark Energy

Thematic Areas: Ground Based Project, Cosmology and Fundamental Physics

Principal Authors:

Name: David J. Schlegel Institution: Lawrence Berkeley National Laboratory Email: djschlegel@lbl.gov

Name: Juna A. Kollmeier Institution: Observatories of the Carnegie Institution of Washington Email: jak@carnegiescience.edu

Proposing team:

Greg Aldering¹, Stephen Bailey¹, Charles Baltay³¹, Christopher Bebek¹, Segev BenZvi³⁰, Robert Besuner³, Guillermo Blanc², Adam S. Bolton²⁰, Mohamed Bouri⁴, David Brooks²⁴, Elizabeth Buckley-Geer²⁹, Zheng Cai⁵, Jeffrey Crane², Arjun Dey²⁰, Peter Doel²⁴, Xiaohui Fan⁶, Simone Ferraro¹, Andreu Font-Ribera²⁴, Gaston Gutierrez²⁹, Julien Guy¹, Henry Heetderks³, Dragan Huterer¹¹, Leopoldo Infante², Patrick Jelinsky³, Matthew Johns², Dionysios Karagiannis⁷, Stephen M. Kent²⁹, Alex G. Kim¹, Jean-Paul Kneib⁸, Luzius Kronig⁸, Nick Konidaris², Ofer

MegaMapper

- 6.5m telescope (2 Magellan blank mirror unused)
- Wide field corrector
- 20'000 fiber robots
- ~32 spectrographs if reusing DESI concept (16 exist)

Instrument (year)	Primary/m ²	Nfiber	Reflections	Product	Speed vs. SDSS
SDSS (1999)	3.68	640	0.9^{2}	1908	1.00
BOSS (2009)	3.68	1000	0.9^{2}	2980	1.56
DESI (2019)	9.5	5000	0.9^{1}	42,750	22.4
PFS (2020)	50	2400	0.9^{1}	108,000	56.6
4MOST (2022)	12	1624	0.9^{2}	15,800	8.3
MegaMapper	28	20,000	0.9^{2}	454,000	238.
Keck/FOBOS	77.9	1800	0.9^{3}	102,000	53.6
MSE	78	3249	0.9^{1}	228,000	119.
LSSTspec	35.3	8640	0.9^{3}	222,000	116.
SpecTel	87.9	15,000	0.9^{2}	1,070,000	560.

MegaMapper

Component	Cost (\$M)	Basis of estimate
Telescope facility	70	Magellan 1 & 2
Secondary	10	Vendor ROM
Corrector	20	DESI
Focal plane	10	DESI
Fibers	5	DESI
Spectrographs	24	DESI and SDSS-V
Total	139	

Hollow Shaft Motor R&D

Massive Spectroscopy Sum-up

- Current massive optical/near-infrared spectroscopy projects charting up to z~3.5 to be completed in 2026-28 !
- Other projects in discussion, but should we have to wait beyond 2032 (e.g. LOT, MSE, LSSTspec, SpecTel) ?
- SKA-1 wide field radio survey will bring a new avenue in massive spectroscopic surveys: HI galaxies with interest in particular at higher redshift 1.5<z<4</p>
- Other route MEGAMAPPER ?

THANKS!

