

MNRAS Letter(arxiv: 2005.09663) + working in progress

Xi Kang Zhejiang University/PMO

Collaborators: Yu Luo (PMO), Yingzhong Xu(ZJU) Zhiyuan Li (NJU), Zongnan Li(NJU), Peng Wang (AIP)

Tsinghua, Nov, 12, 2020

The quenching of massive spiral galaxies ---Background and motivation

Galaxy color/morphology bimodality

Most elliptical galaxies are quenched Most spirals are star forming True vice versa

The quenching of massive spiral galaxies ---Background and motivation

More observational facts about elliptical and spiral galaxies

Elliptical galaxies:

Live in massive haloes Early formation time Existence of hot circular galactical medium (CGM) No fresh cold gas

Spiral galaxies: Halo mass is lower Late formation time Not clear of the existent of hot CGM Plenty cold gas

Fundamental question: Why the two populations are different? Or What determines their diversities?

The quenching of massive spiral galaxies

Galaxy formation is close linked to halo mass/accretion history

Halo mass/accretion history matters:

- Baryon budget in the galaxy
- Gas accretion pattern (cold accretion or cooling from hot gas)
- Galaxy morphology
- Galaxy star formation history

General expectation:

Spiral: in quiet and low-mass halo where cold accretion is efficient- \rightarrow star forming

Massive galaxies: in massive halo where merger and feedback (AGN or others) to quench star formation \rightarrow red

Note: mass quenching-->nonsense

How to quench a massive galaxy?

- Satellite galaxy: environmental quenching---tidal/ram-pressure stripping
- Central galaxy
 Ellipticals: all gas consumed/expelled
 during merger and hot gas does not cool
 (energy source: starburst or AGN)

Red Spirals:

- No star formation in disc
 - no cold gas \rightarrow no quenching needed
 - with gas \rightarrow morphology quenching?
- No hot CGM hot \rightarrow no cooling
- With hot CGM→ How to suppress cooling? (no energy source)

Man & Belli 2019

The quenching of massive spiral galaxies

Quenching of massive (elliptical) galaxies-

- -- a long last challenge !
- Massive halos contain nearly universal baryon, most in hot gas
- Stellar mass is at most 10% of gas in massive galaxies ---Quenching is needed

Eagle simulation, Davis+ 2020

Black hole and AGN feedback in elliptical galaxies

- Almost all elliptical galaxies have massive black holes
- Feedback from radio AGN/QSO can effectively quench star formation (not clear in detail)

The quenching of massive spiral galaxies ---Background and motivation

AGN radio heatin

Croton et al. 2006

Why the two spirals are different?

Blue spiral

Red spiral

Simple but meaningless answer: red spiral has consumed all its gas

For most galaxies, stellar mass is at most ~30% of its universal baryonic mass Where is the other baryon component? Why no new cold gas supply?

Passive spiral galaxies are rare & not well selected (contaminated)

- dozens of passive spirals are found in galaxy clusters until SDSS
- some are not really passive, but red because of dust

Fraser-McKelvie+ 2017 From 2MASS+SDSS

浙河

ZHEJIANG UNIVERSITY

Properties of red spirals

Masters+2010, from galaxy zoo

Μ.

- Red spirals have old ages
- More red spirals at low-z
- High-mass spirals are more likely to be red

Their bar fraction is too high, most have fracDev>0.1

Properties of red spirals Red 🚅 passive

Mahajan+19, Red spiral from GAMA

- Optically selected red spiral has non-negligible SFR
- Red spirals live in more dense region

Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

MNRAS **494**, L42–L47 (2020) Advance Access publication 2020 February 19

xGASS: passive discs do not host unexpectedly large reservoirs of cold atomic hydrogen

L. Cortese ^(D), ^{1,2} ★ B. Catinella ^(D), ^{1,2} R. H. W. Cook ^(D), ² and S. Janowiecki ^(D) ¹International Centre for Radio Astronomy Research, The University of Western Australia, 35 Stirling Hw, 6009 Crawley, WA, Australia ²ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Australia ³Hobby–Eberly Telescope, McDonald Observatory, University of Texas, TX 79734 Austin, USA but SFR from NUV+MIR

Cortese et al. used

the same data set,

Zhang+ use fiber SFR

Many quenched spirals from Zhang+ show blue spiral arms and Ha lines

λ[Å]

λſÅ1

doi:10.1093/mnrasl/slaa032

Morphology of Red Spirals

- Most studies show high bar fraction
- Bar can stabilize the gas disk, suppressing star formation

Bar is present even they select spiral using small fracDev parameter

Fraser-McKelvie+16

Morphology of Red Spirals

Guo, Xia+2020, arXiv:2006.05462

NUMBER OF STREET AND ADDRESS OF STREET

 279 red spiral from 1914 spirals

- Significant bulge/bar in red spirals than in blue spirals
- Cold gas~10%

Bulge and central density of red spirals

• Quenched spirals have larger bulge/bar

Guo+2020, arXiv:2006.05462

Halo mass of Massive blue spirals No miss baryon in some massive spirals

- 175 disc galaxies with near-infrared photometry and HI rotation curves
- Massive blue spirals are in halos mass<3*10¹²M_{sun}, where quick cold accretion is expected

Quenching of low-mass spirals

For satellite galaxies, environmental effect (tidal stripping/ram-pressure) will reduce the gas content

---most low-mass passive spirals are found in/around clusters

(Bamford+2009, Wolf+2009, Fraser-McKelvie+2010)

The quenching of massive spiral galaxies

15

Our Observational Sample

- SDSS+Yang Group catalog+Chang catalog (WISE)
- Central Galaxies with Mhalo>10¹³ Msun & fdev<0.1 72 galaxies in total
- sSFR<10⁻¹¹
 27 Quenched, 52 star forming

Luo, KX+, 2020, MNRAS Letter

Our sample

- Most at z>0.1 (no cold gas data)
- In isolated environment
- 6 among 27 quenched galaxies show AGN activities, others lack emission lines

Distances to nearest neighbor

We randomly select 4 quenched galaxies for CO detection using IRAM 30m for 20 hours

J144916.71+150700.1

J093300.93+594420.4

J114614.24+111501.7

J095123.60+265643.9

13

Table 1. Basic information and observation log of our target galaxies.

33200 33000	Name	J144916.71+150700.1	J093300.93+594420.4	J114614.24+111501.7	J095123.60+265643.9
-	RA (12000)	222,320	143.254	176.559	147 848
	Dec. (J2000)	15.117	59.739	11.251	26.946
	Ζ	0.111	0.151	0.114	0.131
լ բոլի է Դիշել	$\log M_{\rm halo} (M_{\odot})^a$	- 13.40 1.3	13.55	13.66	13.29
	$\log M_{\star} (\mathrm{M}_{\odot})^{b}$	11.20	11.29	11.12	11.02
2000	$\log sSFR (yr^{-1})^c$	-14.12	-14.97	-14.97	-11.72
	Frequency (GHz)	103.75	100.15	103.48	101.92
	T_{int} (h) ^d	4.5	5	3	4.4
	rms ^e (mK)	0.15	0.17	0.22	0.15
	Velocity ^f (km s ⁻¹)	82.47 ± 34.21	-	-169.40 ± 12.31	-
ъ _ П				157.77 ± 17.30	
իթացիշկը քնչ։	$FWHM^g$ (km s ⁻¹)	547.74 ± 100.90	-	155.36 ± 36.09	-
				267.31 ± 43.26	
2000	$T_{\rm mb, peak}^{h}$ (mK)	0.93 ± 0.15	-	1.95 ± 0.22	-
				1.76 ± 0.22	
	I _{CO} ⁱ (K km s ⁻¹)	0.54 ± 0.07	< 0.31 ^j	0.33 ± 0.06	<0.28 ^j
				0.51 ± 0.07	
	$\log L_{\rm CO} (L_{\odot})^k$	9.20 ± 0.06	< 9.24	9.41 ± 0.05	< 9.06
UIU.	$\log M_{\mathrm{H}_{2},0} (\mathrm{M}_{\odot})^{l}$	9.84 ± 0.06	< 9.88	10.05 ± 0.05	< 9.70
	$\log M_{gas,p} (M_{\odot})^m$	9.98	10.02	9.95	9.91

CO(1-0) spectra Two have CO detection. All have cold gas $<10^{10}$ Msun (M_{cold}/M*<0.05)

We lack HI data. The Catinella+ results suggest that for massive, passive galaxies, total gas fraction is at most 10%

For our sample, halo mass is around 10^13 solar mass No massive cold gas

 \rightarrow what has quenched the cooling of halo hot gas?

We use both semi-analytical model and hydro-simulation to see
If models predict such massive quenched spiral galaxies

• If any, Why they are quenched?

The quenching of massive spiral galaxies ---Model predictions

We use the SAM data from Henriques+2015 and apply the same criteria to select massive spiral galaxies

- The fraction of quenched spiral galaxies is too high in the model
- Quenched spirals have slightly more hot gas, but cooling rate is ~ 0
- By turning off AGN feedback, all spirals have cooling rate above 200M_{sun}/year and they becomes blue

Using the TNG simulation, we find the quenched spirals

- > TNG300-1 data, galaxies with M*>10¹¹ solar mass
- We decompose stellar into bulge+disk, select fdev<0.1</p>
- There are 8 quenched spiral galaxies

One of our 8 galaxies

Black hole mass-Bulge mass relation in SAM and Simulations

All galaxies: BH mass are not over-predicted

Quenched spiral galaxies

Quenched spirals have massive black holes compared to their bulges

Content of hot gas around passive spirals in Illustris-TNG: Baryon fraction ~0.3-0.5, most in hot phase

Recent work using TNG300-1

- Increase the sample size by selecting galaxies with M*>10.5 solar mass
- Select galaxies with disk morphology (S/T < 0.25)
- Classify galaxies into star forming and quenched ($sSFR = 10^{-11}$)

Simulation reproduces observational trend that sSFR is correlated with bulge mass

Results from TNG300-1

BH mass- bulge mass relation

- Quenched disks have higher BH mass than than the data
- Star forming disks have larger scatter.

Results from TNG300-1

Results from TNG300-1

Gas content within r<2Re

- Quenched spirals have considerable less HI and H2 gas than star forming ones
- Only a few percent quenched galaxies have HI >10^{9.5} (value used in Zhang+ 2019)

Content of hot gas around local very massive spirals in X-ray observations

All are passive with sSFR<10⁻¹¹

Properties of the CGM-MASS Galaxies								
Galaxy	Scale kpc arcm ⁻¹	M_* 10 ¹¹ M_{\odot}	$M_*/L_{ m K} M_{\odot}/L_{\odot}$	SFR $M_{\odot} \text{ yr}^{-1}$	$\frac{M_{\rm TF}}{10^{11}M_{\odot}}$			
UGC 12591	27.45	$5.92^{+0.14}_{-0.74}$	0.773	1.17 ± 0.13	16.1 ± 1.5			
NGC 669	22.63	$3.32_{-0.17}^{+0.02}$	0.893	0.77 ± 0.07	5.32			
ESO142-G019	18.78	$2.49_{-0.24}^{+0.05}$	1.137	0.37 ± 0.06	5.07 ± 0.90			
NGC 5908	15.10	$2.56_{-0.15}^{+0.02}$	0.842	3.81 ± 0.09	4.88 ± 0.60			
UGCA 145	20.17	$1.47_{-0.08}^{+0.01}$	0.595	2.75 ± 0.11	4.03			
NGC 550	27.09	$2.58_{-0.28}^{+0.04}$	0.773	0.38 ± 0.09	5.08 ± 1.81			

Table 1

Li J.T et al. 2017

Content of hot gas around passive spirals---Xray images

Content of hot gas around passive spirals---Xray images

Gas cooling time is long 1% of SNe energy can explain the x-ray luminosity No additional energy source is needed

AGN activities in local passive spirals?

Masters+2010, from galaxy zoo

AGN fraction increases in quenched massive spirals

AGN in spirals at moderate redshifts? Bizzocchi+2014 identify 19,225 bulgeless galaxies from COSMOS, AEGIS, GEMS, GOODS at 0.4<z<1.0

Most spirals are not quenched, but red

Table 2Catalog Selection Statistics Split by Field $(0.4 \leq z \leq 1.0)$

Field	Total	spec-z	$n \leqslant 1.5$	$1.5 < n \leq 3.0$	<i>n</i> > 3.0
COSMOS	31714	3116	14139	7259	10316
AEGIS	2848	1451	1588	576	684
GEMS	3595	1382	2267	793	535
GOODS-S	852	524	482	199	171
GOODS-N	843	648	749	74	20
Total	39852	7121	19225	8901	11726

Only 30 (0.2%) massive quenched spirals have AGN

ZHEJIANG UNIVERSITY

evolution of passive spirals population Bundy et al. 2010 using COSMOS data

- Absolute number density of passive disks increase with time (more at low-z)
- Fraction of passive disk declines with z, as more quenched disks turn into passive E/S0 at low-z

Fraction of red galaxy

Summary

Observational results:

- Quenched spirals are rare, but more frequent in high-mass spirals
- Most red spirals have bars, indicating bar can suppress star formation in the disk
- Contradictory results on HI gas content in quenched galaxies

Simulation and Model results

- Quenched spirals have larger BH mass than the Magorrian relation, suggesting AGN feedback might be effective
- Quenched spirals have less cold and hot gas than star forming ones

Future: need to know why Quenched spirals have less hot gas Searching AGN activity and X-ray observation are important

Thanks for your attention

The quenching of massive spiral galaxies

~1 percent quenched have HI>10^9.5

If using SFR within 1Re, Some star forming galaxies become quenched