

天文與空閒科學學院 School of Astronomy and Space Science

Recent Progress on New Types of Gamma-Ray Bursts

Binbin Zhang

Nanjing University

12/03/2020 Online Colloquium @ DoA Tsinghua

Old-Type GRBs

"Expected"

- Prompt Emission: γ -ray , X-ray (sometimes), GeV, EE (seconds ~ hours)
- Afterglow : X-ray, optical, radio, GeV (mintutes ~ hours ~ years)
- SN: optical (~ weeks)
- Kilonova: optical, UV (~ hours)
- Host: optical, radio, other wavelength (~ always)

Old-Type GRBs: What're New?

"Unexpected/Unusal"

- Precursors: all-wavelength
- Prompt Emission: optical, radio, (early) X-ray, γ -ray, GeV, EE, TeV
- Afterglow : (early) X-ray, (early) optical, (deep) optical, radio, GeV
- SN
- Kilonova: optical, UV (large sample)
- Host: optical, radio, other wavelength (large sample)
- Neutrinos
- Gravitational Waves

New-Type GRBs

- Precursors: all-wavelength
- Prompt Emission: optical, radio, (early) X-ray, γ -ray, GeV, TeV
- Afterglow : (early) X-ray, (early) optical, (deep) optical, radio, GeV
- SN
- Kilonova: optical, UV, (large sample)
- Host: optical , radio , (large sample)
- Neutrinos
- Gravitational Waves
- "New-Type" GRBs
- Ultral-Long GRBs (~ hours, all wavelength, all time frames)
- Ultral-Soft GRBs (~ low Ep, thermal spectrum, all wavelength, all time frames)
- X-ray only GRBs (a.k.a. X-ray transient, Xue et al. 2019)
- GRB related to other unusual sources (e.g., FRBs ? Dai et al.; GWs;)
- Sub-TeV GRBs
- Sub-threshold GRBs (more interesting if concidence w/ other messengers/wavelength)
- Temporally or spectrally peculiar GRBs (LL, extra component, etc)
- SGR GF GRB;
- Unknown-Origion GRBs (trouble makers)

New-Type GRBs

- Precursors: all-wavelength <==
- Prompt Emission: optical, radio, (early) X-ray, γ -ray , GeV, TeV
- Afterglow : (early) X-ray, (early) optical, (deep) optical, radio, GeV
- SN
- Kilonova: optical, UV, (large sample)
- Host: optical , radio , (large sample)
- Neutrinos
- Gravitational Waves
- "New-Type" GRBs
- Ultral-Long GRBs (~ hours, all wavelength, all time frames)
- Ultral-Soft GRBs (~ low Ep, thermal spectrum, all wavelength, all time frames)
- X-ray only GRBs (a.k.a. X-ray transient, Xue et al. 2019)
- GRB related to other unusual sources (e.g., FRBs ? Dai et al.; GWs;)
- Sub-TeV GRBs
- Sub-threshold GRBs (more interesting if concidence w/ other messengers/wavelength) <==
- Temporally or spectrally peculiar GRBs (LL, extra component, etc)
- SGR GF GRB; <==
- Unknown-Origion GRBs (trouble makers) <==

Precursors of GRBs

Precursors of GRBs

Zhang B.-B. et al 2018 Nature Astronomy

Precusors can be common: photosphere emission is always there....

Precursors in short GRBs

- Found 16 out of 529 sGRB (3%).
- Thermal or Non-Thermal
- Shock breakout, photospheric, magnetospheric
- Γ ~ 30

Wang, J.-S. et al. 2020, ApJL

Sub-threshold GRBs

(dig out a needle in a haystack)

- Apples Paper and a second	and the state of t
Tulvili, sun, M. Likwihi	
h/h/plph/alm/cl/m/h/h	
	10110000000000000000000000000000000000
$\prod_{i=1}^{n-1} \left \left$	And the fight for the state
	Manual Manual Strates

Subthreshold GRBs More interesting w/ GW

Yang, Y.-S et al 2020, ApJ

Q22

🥳 🖂

f in &

Current GW-EM Zoo

Case	Туре	EM	Ref.
GW150914-GBM/ GW150914	BH-BH	very unlikely EM	Connaughton+15
GRB170817A/ GW170817/AT 2017gfo	NS-NS	Definitely Beautiful!	Abbott+17
S190510g	NS-NS	13 optical EM candidtes, NONE confirmed	Andreoni+19a
S190814bv	BH-NS	Deep search yeild nothing confirmed in EM	Andreoni+19b Dobie+19, etc
GW190425z	NS-NS	13 optical candiates, nothing confirmed	Coughlin+19a Antier+19
S190426c, S190510g, S190901ap, S190910h	NS-?	deep search, some candiates, nothing confirmed	Coughlin+19b Goldstein+19
"I-OGC 151030"	NS-NS	found by 3rd party, sub-threshold, high FAR, GW NOT confirmed by LIGO	Nitz+19
GBM-190816	BH-?	Both GW and EM are identified as sub-threshod by LVC/Fermi	GCN Circulars

Words from LVC/Fermi

Fermi GBM-190816: A sub-threshold GRB candidate **potentially** associated with a sub-threshold LIGO/Virgo compact binary merger candidate

LIGO L1 and V1 identified a **possible** compact binary merger candidate at 2019-08-16 21:22:13.027 UTC (GPS Time: 1250025751.027).

The GBM Targeted Search found a sensitive and coherent search for subthreshold GRB-like signals (GBM-190816) at 21:22:14.563 UTC (our T0), 1.57 s after the GW trigger Time.

GBM-190816:

- ①. Duration: approximately 0.1 s
- ②. Hard spectral template
- (3). The lighter compact object may have a mass < 3 M_{\odot} .

④. FAR ~ 1.2 × 10⁻⁴

GCN #25406

Words from LVC/Fermi

Distance from GW: 352 +/- 151 Mpc

GCN #25406

Excited Community

Search by

INTEGRAL/SPI-ACS, ANTARES, HAWC, IceCube, Zwicky, AGILE, Fermi-LAT, MAXI/GSC

(Nothing in optcal, High-E, neutrinos, X-ray)

Gamma-ray Caught by 2 of 3 of our blind-search pipelines

Independently identified by Rongji Cang (Tsinghua)

64

30.

Much stronger EM emission than GW150914

Goal:

Confirm it is a GRB

What kind of merger can produce such a GRB?

•

•

What kind of merger can produce such a marginaly-detected GW signal at 352 Mpc?

What can cause the 1.57 s delay?

Bayesian Block (BB) (Scargle et al. 2013):

Signal appears in various conditions.

The significance level of the burst S/N reached 3.95.

Multi-wavelegth light curves

Pulse evolution and struture

Precise Duration

 $T_{90} = 0.112^{+0.185}_{-0.085} s$ starts at T_{90,1} = $0.032^{+0.025}_{-0.065} s$ ends at T_{90,2} = $0.143^{+0.17}_{-0.11} s$

f parameter

- (a.k.a : tip-of-iceberg effect, Lü, H.-J. et al. 2012)
- $f = 2.58 \pm 0.37$, typical as a short GRB
- f: the ratio between the peak flux and the average background flux
- f_{eff} : the ratio between the peak flux of a pseudo-burst and the average background flux.
- However, there is a non-negligible probability (p \sim 0.03.) of being the "tip of iceberg" of a longer short burst.

Spectral Analysis

Time Interval	L			CPL	
t_1	12	$\Gamma_{\rm ph}$	E_p	logNorm	PGSTAT/dof
0.032	0.143	$-0.92\substack{+0.32\\-0.58}$	$94.84^{\pm114.64}_{\pm17.94}$	$0.53\substack{+0.72\\-0.41}$	130.1/227

Advanced mission-independnt data analysis tools:

Input: Time & Location Output: All you need Things Considered: Geometry, Detector Rsp, S/N Counts Statistics, BKG Modeling, Noise Uncertainties ...

UTD of Ing	pper time	
2017-0	6-1712:41:06.4	
Location p	finierest	
197,49	00-233833	
-cos tan	çe	
-2.040	1	
linsize of	LC	
0.05		
loveral A	nalysis Range	
-0.303	1	
at Slives	of Spectra	
1		
Name of R	mults Folder	
SHUT	UNITAL INFO-MARK	
Job Server		
YouMu	EKroult	

GBM-190816 as a short GRB

Observed Properties	
T ₉₀ (s)	$0.112^{+0.185}_{-0.085}$
Peak energy E_p (keV)	$94.84^{+114.64}_{-17.94}$
Total fluence($erg cm^{-2}$)	$7.38^{+6.35}_{-2.51} \times 10^{-8}$
Distance (Mpc)	362 + / -151
Isotropic energy $E_{\gamma,\text{iso}}$ (erg)	$1.14^{+3.18}_{-0.89} \times 10^{48}$
Luminosity $L_{\gamma, iso}$ (erg s ⁻¹)	$1.02^{+2.84}_{-0.80} \times 10^{49}$
f parameter	2.58 + / -0.37

If it looks like a duck, walks like a duck and quacks like a duck, then it just may be a duck.

(Walter Reuther)

Burst confirmed. Concidence established.

How to make the burst (EM part)?

Case 1: NS-BH (NS is not swallowed) Case 2: NS-BH (NS is swallowed) Case 3: BH-BH

Obs:

Burst Energy

NS-BH Merger with Tidal Disruption: Constraints on Model Parameters

Total mass of the matter left outside Mout:

$$M_{\rm out} = M_{\rm NS}^{\rm b} \left[\max \left(\alpha \frac{1 - 2\rho}{\eta^{1/3}} - \beta \tilde{R}_{\rm ISCO} \frac{\rho}{\eta} + \gamma, 0 \right) \right]$$

The dimensionless ISCO radius follows

$$\tilde{R}_{\rm ISCO} = R_{\rm ISCO}c^2/GM_{\rm BH} = 3 + Z_2 - \text{sgn}(\chi_{\rm BH})\sqrt{(3 - Z_1)(3 + Z_1 + 2Z_2)}$$

Dynamical ejecta mass M_{dyn}

$$M_{\rm dyn} = M_{\rm NS}^{\rm b} \left\{ \max \left[a_1 q^{n_1} \left(1 - 2C_{\rm NS} \right) / C_{\rm NS} - a_2 q^{n_2} \tilde{R}_{\rm ISCO} \left(\chi_{\rm eff} \right) + a_3 \left(1 - M_{\rm NS} / M_{\rm NS}^{\rm b} \right) + a_4, 0 \right] \right\}$$

The disc mass M_{disc}

 $M_{\rm disc} = M_{\rm out} - M_{\rm dyn}$

The kinetic energy of the jet can be calculated by $E_{\rm K,jet} = \epsilon \left(1 - \xi_{\rm w}\right) M_{\rm disc} c^2 \Omega_{\rm H}^2 f\left(\Omega_{\rm H}\right)$

The dimensionless spin of the final BH remnant

 $\chi_{\rm BH,f} = \frac{\chi_{\rm BH} M_{\rm BH}^2 + l_z \left(\bar{r}_{\rm 1SCO}, \chi_{\rm BH,f}\right) M_{\rm BH} M_{\rm NS}}{M^2}$

The orbital angular momentum per unit mass of a test particle orbiting the BH remnant at the ISCO

$$l_{z}\left(\bar{r}_{\rm ISCO},\chi_{\rm BH,f}\right) = \operatorname{sgn}\left(\chi_{\rm BH,f}\right) \frac{\bar{r}_{\rm ISCO}^{2} - 2\operatorname{sgn}\left(\chi_{\rm BH,f}\right)\chi_{\rm BH,f}\sqrt{\bar{r}_{\rm ISCO}} + \chi_{\rm BH,f}^{2}}{\sqrt{\bar{r}_{\rm ISCO}}\left(\bar{r}_{\rm ISCO}^{2} - 3\bar{r}_{\rm ISCO} + 2\operatorname{sgn}\left(\chi_{\rm BH,f}\right)\chi_{\rm BH,f}\sqrt{\bar{r}_{\rm ISCO}}\right)^{1/2}}$$

we assume a Gaussian-shape structured jet with an angular distribution of the kinetic energy and Lorentz factor Γ following

$$\frac{dE}{d\Omega}(\theta) = E_{\rm c}e^{-\left(\theta/\theta_{\rm c,j}\right)^2}, \quad \Gamma(\theta) = \left(\Gamma_{\rm c} - 1\right)e^{-\left(\theta/\theta_{\rm c,j}\right)^2} + 1$$

At the viewing angle θ_v , the isotropic gamma-ray radiation energy can be estimated as

$$E_{\gamma,iso}\left(\theta_{\nu}\right)\simeq\eta_{\gamma}\int\frac{D_{\mathrm{p}}^{3}}{\Gamma}\frac{dE}{d\Omega}d\Omega$$

 $E_{iso} = E_{iso}(M_{NS}, q, \epsilon, \xi_{w}, \eta_{w}, \Gamma_{o}, \theta_{jet}, \theta_{obs}, \Lambda_{N-w})$

NS-BH Merger with Tidal Disruption: Constraints on Model Parameters

How to make the marginally detected GW Event?

POSSIBLE SUB-THRESHOLD GRAVITATIONAL WAVE SIGNAL

Information:

- 1. L1 and V1 data are available at that time.
- 2. LVC identified a possible CBC candidate at 2019-08-16 21:22:13.027 UTC.
- 3. The network S/N of this sub-threshold event is below the threshold of GW analysis pipelines, which is 12.
- 4. The luminosity distance of the event is constrained to 362±151 Mpc
- 5. The lighter compact object of this CBC event may have a mass < 3 M_{\odot}

Assumptions:

- 1. One compact object of this CBC event is an NS with a mass of $1.4~M_{\odot}$
- 2. The sensitivity of the L1 detector in O3 is twice of that in O1.
- **3.** The **S/N of the event is 8** and mostly contributed by L1.

Constraints:

Follow the FINDCHIRP pipeline (Allen et al. 2012). The mass ratio lies in **q** ~ **[2.142, 5.795]**

q ~ [2.142, 5.795]: allows non-tidal-disruption process (large q)

Charged CBC is needed produce the observed GRB (for cases 2 & 3)

cCBC with Constant Charge (Plunging NS-BH Merger)

Electric dipole radiation luminosity

$$L_{\rm e,dip} = \frac{1}{6} \frac{c^5}{G} \left(\hat{q}_1^2 + \hat{q}_2^2 \right) \left(\frac{r_s \left(m_1 \right)}{a} \right)^2 \left(\frac{r_s \left(m_2 \right)}{a} \right)^2$$

Magnetic dipole radiation luminosity

$$L_{\rm B,dip} = \frac{196}{1875} \frac{c^5}{G} \left(\frac{\hat{q}_1 m_1 + \hat{q}_2 m_2}{M} \right)^2 \times \left(\frac{r_s(\mu)}{a} \right)^4 \left(\frac{r_s(M)}{a} \right)^1$$

Zhang, B. 2016, 2019

Isotropic EM luminosity, assuming $\eta_{\gamma} \sim 1$

$$L_{\gamma,\text{iso}} = \eta_{\gamma} \left(L_{\text{e,dip}} + L_{\text{B,dip}} \right)$$

For an NS-BH merger system: Under the following simplest assumptions: (1) only the NS carries a constant charge; (2) the NS mass is 1.4 M_o; (3) $a = a_{min} = r_s(m_{BH}) + 2.4r_s (m_{NS}) (r_{NS} = 2.4 r_s for neutron star) at the merger time; (4) mass-ratio q lies in [2.142, 5.795].$ **q**_{NS} lies in [1.25, 1.50] ×10^{-4.}

$$\hat{q}_{\rm NS} \simeq \frac{3\Omega B_p R^3}{2c\sqrt{G}M} \cos\alpha = (4.4 \times 10^{-4}) B_{15} P_{-3}^{-1} R_6^3 M_{1.4}^{-1} \cos\alpha$$

 B_{15}/P_{-3} should fall in the range of ~ [0.28, 0.34]. Implying that the neutron star has to be a millisecond magnetar. Disfavored.

Absolute charge Q_{NS} lies in [1.75, 2.11] ×10^{26.} e.s.u

cCBC with Constant Charge (BH-BH Merger)

Electric dipole radiation luminosity

$$L_{\rm e,dip} = \frac{1}{6} \frac{c^5}{G} \left(\hat{q}_1^2 + \hat{q}_2^2 \right) \left(\frac{r_s \left(m_1 \right)}{a} \right)^2 \left(\frac{r_s \left(m_2 \right)}{a} \right)^2$$

Magnetic dipole radiation luminosity

$$L_{\rm B,dip} = \frac{196}{1875} \frac{c^5}{G} \left(\frac{\hat{q}_1 m_1 + \hat{q}_2 m_2}{M}\right)^2 \times \left(\frac{r_s(\mu)}{a}\right)^4 \left(\frac{r_s(M)}{a}\right)^{11}$$

Zhang, B. 2016, 2019

Isotropic EM luminosity, assuming $\eta_{\gamma} \sim 1$

 $L_{\gamma,\text{iso}} = \eta_{\gamma} \left(L_{\text{e,dip}} + L_{\text{B,cip}} \right)$

For a charged BH-BH system : Under the following simplest assumptions: (1) the lighter BH has a mass of 2.8 M_{\odot} , (2) only the lighter BH carries a constant dimensionless charge. We constrains: q_{BH} lies in [5.97, 10.32] ×10⁻⁵. The demanded dimensionless charge is comparable to the one required to explain the putative y-ray event GW150914-GBM.

Absolute charge Q_{NS} lies in [1.67, 2.89] ×10^{26.} e.s.u

q ~ [2.142, 5.795]: allows non-tidal-disruption process (large q)

Charged CBC must at work to produce the observed GRB

Case 1: Constant Charge — Contrived conditions needed for a BH to carry very large charge.
q ~ [2.142, 5.795]: allows non-tidal-disruption process (large q)

Charged CBC must at work to produce the observed GRB

Case 1: Constant Charge — Contrived conditions needed for a BH to carry very large charge.

> Case 2: Increasing Charge – (Dai 2019)

cCBC with Increasing Charge (NS/BH-BH Merger)

A BH is immersed in the magnetic field of the NS and gains charge via the Wald mechanism (Wald 1974).

BH may reach the maximal Wald charge when it could transit from the electro-vacuum state to the force-free state.

At this point, four possible pre-merger mechanisms generate γ -ray emission:

①first and second magnetic dipole radiation

②second magnetic dipole radiation,

③electric dipole radiation,

(4) magnetic reconnection close to BH's equatorial plane.

And two possible post-merger mechanisms:

()magnetic reconnection at polar regions

②BZ mechanism.

Dai 2019, Zhong, S.-Q. et al 2019

cCBC with Increasing Charge (Plunging NS-BH Merger)

Following Dai (2019) and Zhong et al. (2019), we calculate that the sub-threshold GRB could be produced by the premerger magnetic reconnection or the post-merger BZ mechanism if the NS' surface magnetic field $\log(B_{S,NS}/G) > 13.4$ and $\log(B_{S,NS}/G) \sim 13.5 - 14.5$, respectively.

Given the following conditions:

- (1). The radiative efficiency $\eta_{\gamma} = 1$,
- (2). The mass ratio q = 5.5,
- ③. The minimal separation between the BH and the
- NS a_{min} = 2GM_BH/c^2 + $r_{NS},$ and the NS mass M_{NS} = 1.4 M_{\odot} and its radius r_{NS} = 12 km.

Seems more reasonable

q ~ [2.142, 5.795]: allows non-tidal-disruption process (large q)

Charged CBC must at work to produce the observed GRB for cases 2 & 3

Case 1: Constant Charge — Contrived conditions needed for a BH to carry very large charge.

> Case 2: Increasing Charge – Seems possible.

The GW-GRB Time Delay

What can cause the delay?

(1) **Δt**_{jet},

delay time to launch a clean relativistic jet. Includes three parts :

①.The waiting time Δt_{wait} for a central object (BH) to form,

(2). The accretion time scale Δt_{acc} ,

(3). time Δt_{clean} for the jet to become clean.

In the case GBM-180916, at least one BH exists in the pre-merger system so Δt_{wait} is 0. $\Delta t_{clean} \sim 0$ (BH) Δt_{acc} is typically ~ 10 ms. So Δt_{jet} is at most 0.01 s.

(2) **Δt**bo

delay time for the jet to break out from the surrounding medium. For an NS-BH central engine, Δt_{bo} is typically **10 ms to 100 ms**.

(3) **Δt**_{GRB},

The GW-GRB Time Delay

Implications:

- GBM-190816's 1.57 s-delay is similar to the 1.7 s-delay in GW170817/GRB 170817A, suggesting Δt_{jet} of ~1.6-1.7 s can be common and due to fact that GRBs happen at large radius (Zhang, B.-B et al 2018, Zhang, B. 2019).

- 0.1 s peak of GBM-190816 seems to be a tip of iceberg

Summary

Table 2. Observational Properties and Derived Constraints of GBM-190816.

Observed Properties	
T ₉₀ (s)	$0.112^{+0.185}_{-0.085}$
Peak energy E_p (keV)	$94.84^{+114.64}_{-17.94}$
Total fluence($erg cm^{-2}$)	$7.38^{+6.35}_{-2.51} \times 10^{-8}$
Distance (Mpc)	362 + / - 151
Isotropic energy $E_{\gamma,iso}$ (erg)	$1.14^{+3.18}_{-0.85} imes 10^{48}$
Luminosity $L_{\gamma,iso}$ (erg s ⁻¹)	$1.02^{+2.84}_{-0.80} imes 10^{49}$
f parameter	2.58 + / - 0.37
Assumed Parameters	
Jet core angle $\theta_{c,j}$	assumed 5° (16°)
Viewing angle θ_v	$10^{\circ} - 19^{\circ} (18^{\circ} - 24^{\circ})$
Г.	assumed 100
$m_2 (M_{\odot})$	assumed 1.4
Derived Constrains	
q from GRB	varies
q from GW	[2.142, 5.795]
$m_1 (M_{\odot})$	varies
Intrinsic duration(s)	1.57
Charge of BH (e.s.u.)	[1.75, 2.11] ×10 ²⁶ (for NS-BH system)
	[1.67, 2.89] ×10 ²⁶ (for BH-BH system)

1. A confirmed short GRB, potentially with GW.

(Sub-threshold is just because of it is far)

- 2. CBC of BH-NS model parameters can be constrained.
- 3. cCBC is also possible but likely with increasing charge
- 4. Constant CBC may work better for FRBs.
- 5. large emission radius can cause the delay

May be the only EM counterpart in O3 so far!

May be the only EM counterpart in O3 so far!

SGR-GF GRBs

SGR GF GRB 200415A

1st confirmed short GRB that comes from magnetar giant flare

(Not a sGRB from NS-NS, NS-BH merger)

Yang, Jun et al 2020, ApJ

Direct Hint

✓Spatially associated with a nearby galaxy @ 3.5 Mpc
✓Short, Bright, High E_{peak}, LAT detection

Localization

IPN location to the Sculptor galaxy : 5.7 arcmin

Chance probability: 1.3×10^{-5} (Bloom et al 2002)

Distance of Sculptor galaxy (NGC 253): 3.5 Mpc

typical sGRB flux 1e-7 cgs at Gpc (z=1)

at 3 Mpc , flux = 1e-2 cgs ! (brightest ever)

Is GRB 200415A a typical short burst at 3.5 Mpc?

Bright; but not as bright as expected

Plus:

It is very short, energetic and not following the sGRB track!

Observed Properties	GRB 200415A
Abrupt rise time	$\sim 2 \text{ ms}$
Steep decay time	$\sim 8 \text{ ms}$
T_{90} (sharp peak only)	5.88 ^{+0.23} _{-0.34} ms Sharp Spike
Total duration	$\sim 200 \text{ ms}$
Γ _{ph} at peak	$-0.00^{+0.26}_{-0.16}$
$E_{\rm p}$ at peak	1688.27 ^{+304.76} keV High Peak Energy
Time-integrated $\Gamma_{\rm ph}$	$-0.14\substack{+0.06\\-0.06}$
Time-integrated $E_{\rm p}$	$926.68^{+51.78}_{-52.33}$ keV
Total fluence	$9.29^{+0.92}_{-0.90} imes 10^{-6} m ~erg~cm^{-2}$
Peak flux	$1.11^{+0.13}_{-0.11} \times 10^{-3} \text{ erg cm}^{-2} \text{ s}^{-1}$ Large Flux at peak
Possible host galaxy	Sculptor galaxy (NGC 253)
Distance	3.5 Mpc
Isotropic energy $E_{\gamma,iso}$	$1.36^{+0.14}_{-0.13} imes 10^{46}$ erg Very Small Energy
Peak luminosity $L_{\gamma,p,iso}$	$1.62^{+0.21}_{-0.16} imes 10^{48}{ m erg}{ m s}^{-1}$

GRB 200415A : Compared with other GRBs

Not typical at all unless you put it 40 times farther

GRB 200415A : Compared with other GRBs

Can it be an off-axis GRB (like GRB 170817A)?

Very difficult because (1) Very high Ep ~ 1.5 MeV (2) Very sharp spike of 5 ms

Giant Flare : A Natural Solution

Sharp Spike Appropriate energy (10⁴⁶ erg) Similar spectral domain

Giant Flare Sample

Giant Flares	SGR 0526-66	SGR 1900 + 14	SGR 1806-20	GRB 200415A
Date	$1979~\mathrm{March}$ 5	1998 August 27	$2004 \ {\rm December} \ 27$	
Location	N49	Cluster	Cluster	NGC 253
Distance	$53.6 \ \mathrm{kpc}$	$12.5 \ \mathrm{kpc}$	$8.7 \ \mathrm{kpc}$	3.5 Mpc
Initial pulse				
Duration, s	~ 0.25	~ 0.35	~ 0.2	$\sim\!0.2$
Peak luminosity, $erg s^{-1}$	$3.6 imes10^{44}$	$3.8 imes 10^{44}$	$1.19 imes10^{47}$	
Energy, erg	$1.6 imes10^{44}$	$1.5 imes 10^{44}$	7.88×10^{45}	
Tail				
Duration, s	~ 200	~ 400	$\sim 380~{ m s}$	
Period, s	8.1	5.15	7.56	
QPO, Hz	43	54, 84, 155	18, 30, 92.5	

Giant Flare GRBs : Previous Attempts

Vol 438.15 December 2005 dol:10.1036/nature04310 nature FRS GRB 070201: A POSSIBLE SOFT GAMMA-RAY REPEATER IN M31¹ E. O. Ofek,² M. Muno,² R. Quimby,² S. R. Kulkarni,² H. Stiele,³ W. Pietsch,³ E. Nakar,² A. Gal-Yam,⁴ A. Rau,² P. B. Cameron,² S. B. Ceneo,² M. M. Kasliwal,² D. B. Fox,⁵ P. Chandra,^{6,7} A. K. H. Kong,^{9,9} and R. Barnard¹⁰ An origin in the local Universe for some short γ -ray bursts Received 2007 December 13; accepted 2008 February 18 N. R. Tanvir¹, R. Chapman¹, A. J. Levan¹ & R. S. Priddey¹ Published: January 2007 GRB070201 (M31) On the possibility of identifying the short hard burst 300 1 1 1 1 1 1 1 GRB051103 (M81) GRB 051103 with a giant flare from a soft gamma (a)

D. D. Frederiks, V. D. Palshin, R. L. Aptekar, S. V. Golenetskii, T. L. Cline & E. P. Mazets

repeater in the M81 group of galaxies

Astronomy Letters 33, 19-24(2007) Cite this article

46 Accesses | 38 Citations | Metrics

NO Smoking Gun!

GRB 200415A: unprecedented data and smoking guns!

THE ASTROPHYSICAL JOURNAL, 899:106 (11pp), 2020 August 20 © 2020. The American Astronomical Society. All rights reserved.

https://doi.org/10.3847/1538-4357/aba745

GRB 200415A: A Short Gamma-Ray Burst from a Magnetar Giant Flare?

Jun Yang^{1,2}, Vikas Chand^{1,2}, Bin-Bin Zhang^{1,2,3}, Yu-Han Yang^{1,2}, Jin-Hang Zou⁴, Yi-Si Yang^{1,2}, Xiao-Hong Zhao^{5,6,7}, Lang Shao⁴, Shao-Lin Xiong⁸, Qi Luo^{8,9}, Xiao-Bo Li⁸, Shuo Xiao⁸, Cheng-Kui Li⁸, Cong-Zhan Liu⁸, Jagdish C. Joshi^{1,2}, Vidushi Sharma¹⁰, Manoneeta Chakraborty¹¹, Ye Li^{12,13}, and Bing Zhang³, ¹School of Astronomy and Space Science, Nanjing University, Nanjing 210093, People's Republic of China; bhzhang@nju.edu.cn, vikasK2@nju.edu.cn ²Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, People's Republic of China ³Department of Physics and Astronomy, University of Nevada Las Vegas, NV 89154, USA ⁴College of Physics, Hebei Normal University, Shijiazhuang 050024, People's Republic of China ⁵Yunna Observatories, Chinese Academy of Sciences, Kunning, People's Republic of China ⁶Center for Astronomical Mega-Science, Chinese Academy of Sciences, Kunning, People's Republic of China ⁷Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, I9B Yuquan Road, Beijing 100049, People's Republic of China ⁹University of Chinese Academy of Sciences, Chinese Academy of Sciences, I9B Yuquan Road, Beijing 100049, People's Republic of China ¹⁰Inter University Centre for Astronomy and Astrophysics, Pune, India ¹¹DAASE, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India ¹²Kavli Institute for Astronomy and Astrophysics, Peing University, Beijing 100081, People's Republic of China ¹³Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 100081, People's Republic of China ¹⁴Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 100081, People's Republic of China *Received 2020 Jun 23; revised 2020 July 10; accepted 2020 July 10; published 2020 August 18*

GRB 200415A: Light Curve

GRB 200415A: Tiny Lags

GRB 200415A: Time-Dependent Spectral Analysis

Time Intervals	Best	Flux		reBB Faranestars			
$(i_1, i_2) \otimes i_1$	Model	$(arg cm^{-2} s^{-1})$	kT_{min} (keV)	$\lambda T_{max} (bxN)$	A1	pgstat/doi	BIC
(-0.015, 0.008)	ra1515	$4.32^{+2.03}_{-2.03} \times 10^{-4}_{-1.03}$	38,40 党员	507.0011111	-0.33*\$*1	276.5/350	302.00
(0.005, 0.200)	CPI.	$2.79_{-0.77}^{+0.12} \times 10^{-5}$	$27.75^{+19.31}_{-1.49}$	$399.87_{-10.70}^{+0.11}$	$0.38^{+0.17}_{-0.10}$	277.8/390	301.28
(-0.005, 0.200)	rrBB	$4.53^{+0.45}_{-0.46} \times 10^{-5}$	34.23 28	542.61_31.8	$-0.00^{+0.15}_{-0.22}$	279.9/350	303.34
(-0.005, -0.003)	CPL	$1.99^{+0.00}_{-0.00} imes 10^{-4}$	43.322184	402.21-0.404	$-1.18^{+0.31}_{-0.35}$	192.1/350	215.53
(-0.033, -0.031)	reBB	4.10基础 × 10 ⁻⁴	47.96 [3]	539.31 212	$-0.85^{+0.22}_{-0.35}$	206.5/350	231.98
(-0.001, 0.001)	CPL	$6.61^{+2.19}_{-1.46} \times 10^{-4}$	42.29 1.0	789.59 ^{+043.87}	0.45 3.0	221.1/390	244.59
(0.001, 0.003)	1546	1.79普查 × 10-1	94.061124	588.12*[2] 17	-0.76*278	206.2/390	229.64
(0.005, 0.010)	BB	$1.17^{+0.37}_{-0.32} \times 10^{-6}$	68.85 04.85	298.35 ⁻³⁸¹¹⁵	1.64-131	177.1/390	200.68
0.010, 0.000	CPI.	$1.16^{+0.25}_{-0.20} \times 10^{-4}$	77.42 115.65	375.41 論語	0.63.215	218.4/350	241.9
(0.020, 0.040)	BB	$5.07^{+0.85}_{-0.15} \times 10^{-5}$	98.55	273.80 ^{+183.05}	0.81 158	194.2/350	217.00
(0.040, 0.060)	CPL	$3.75^{+0.00}_{-0.00} \times 10^{-6}$	34.311 読品	209.64*(*)**	0.81 732	257,4/390	220,83
(0.060, 0.120)	BB	$8.38^{+1.00}_{-48} \times 10^{-6}$	48.89.18.9	221.48 900 14	$-0.83^{+0.94}_{-0.94}$	195.2/350	218.67
m 120, 0.20m	PT.	$3.78^{+1.08} \times 10^{-5}$			Concestrated		

Time Intervals		CPL Parameters			BB. Farameters		
$(i_1, i_2) (0)$	Гра	$E_{\rm p}~({\rm locV})$	pgsint/dof	BIC	kT (keV)	pgshi/dof	BIC
(-0.005, 0.006)	-0.28+525	11.16.0913328	300.2/351	317.99	140.45 委员	458.4/352	470.10
(0.005, 0.200)	$-0.01^{+0.09}_{-0.00}$	826.43 ^{+21.00}	279.1/391	25/0.08	143.0902772	365.3/362	397.05
(-0.005, 0.200)	$-0.14^{+0.04}_{-0.04}$	925.68 ^{+41.20} 21.80	292.3/351	309.92	$142.12\substack{+0.00\\-0.00}$	533.5/352	545.27
(-0.005, -0.003)	0.26158	261.531装度	196.6/351	214.19	82.27 禁留	205.5/362	217.15
(-0.003, -0.001)	0.03 - 315	607.43+100.26	217.7/351	23.5.26	97.81-6.90	237.5/352	249,27
(-0.001, 0.001)	$-0.00^{+0.04}_{-0.08}$	1688.27 ^{+301.36}	222.6/351	240.22	289.57	241.2/382	252.97
(0001, 0105)	0.61 ⁺ [\$]	857.38土間結合	238.6/251	22.4.25	182.55+1712	212.4/382	224,10
(0.005, 0.010)	1.07+3.0	847.03±20.12	176.4/391	194.05	233.18世纪第	177.0/382	186.73
(0.010, 0.020)	0.53*****	$907.19_{-99.61}^{+00.94}$	220.4/351	238.05	$102.23^{+31.71}_{-1.00}$	227.9/382	239,66
0.020, 0.0100	0.69_0.00	743.532 11.07	194.6/351	212.19	148.98+11.26	198.8/362	210.55
(34040, 0.0020)	0.31+323	676.50+公装	257.9/151	275.50	139.207+13.00	273.9/382	285.63
(0.060, 0.120)	$0.65^{+0.02}_{-0.02}$	374.23 43.24	196.4/351	214.00	85.80 ⁺⁸⁰⁰⁰	199.0/352	210.70
(0.120, 0.200)	Upconstrained				Unconstrained		

Note. The CPL model can be expressed as $N(E) = \Delta E^{T_{R}} \exp[-E(2 + T_{ph})/E_{p}]$. The PL model gives an averytable fit in the time slice between $T_{h} + 0.12$ and $T_{h} = 0.20 \times T_{ph} = -1.44^{+0.01}_{-0.01}$, pgant/dof = 179.2/302, BiC = 190.96. Flux is derived based on the best model within 10–10,000 keV for each dice. Here the errors correspond to the 1 σ coefficie intervals.

GRB 200415A: Time-Dependent Spectral Evolution

GRB 200415A: Time-Dependent Spectral Constraints

mBB

CPL

GRB 200415A: Summary of Properties

Observed Properties	GRB 200415A
Abrupt rise time	$\sim 2 \text{ ms}$
Steep decay time	$\sim 8 \text{ ms}$
T_{90} (sharp peak only)	$5.88^{+0.23}_{-0.34}$ ms
Total duration	$\sim 200 \text{ ms}$
$\Gamma_{\rm ph}$ at peak	$-0.00\substack{+0.26\\-0.16}$
$E_{\rm p}$ at peak	$1688.27^{+304.76}_{-224.37} \text{ keV}$
Time-integrated $\Gamma_{\rm ph}$	$-0.14\substack{+0.06\\-0.06}$
Time-integrated $E_{\rm p}$	$926.68^{+51.78}_{-52.33}$ keV
Total fluence	$9.29^{+0.92}_{-0.90} \times 10^{-6} \mathrm{~erg~cm^{-2}}$
Peak flux	$1.11^{+0.15}_{-0.11} imes 10^{-3} m ~erg~cm^{-2}~s^{-1}$
Possible host galaxy	Sculptor galaxy (NGC 253)
Distance	3.5 Mpc
Isotropic energy $E_{\gamma,iso}$	$1.36^{+0.14}_{-0.13} \times 10^{46} \text{ erg}$
Peak luminosity $L_{\gamma,p,iso}$	$1.62^{+0.21}_{-0.16} \times 10^{48} \mathrm{~erg~s^{-1}}$

GRB 200415A: Comparison with Other GF GRB Candidates

Properties	GRB 200415A	SGR 1806–20 GF	GRB 051103	GRB 070201
Location	NGC 253	Massive star cluster	M81	M31
Distance	3.5 Mpc	8.7 kpc	3.6 Mpc	0.78 Mpc
Initial Pulse				
Steep rise, ms	~ 2	~ 1	≤6	~ 20
Decay, ms	~8	~ 200	~40	~160
Rapid spectral evolution	1	1	1	1
CPL photon index Γ_{ph}	$-0.28^{+0.06}_{-0.08}$	$-0.73^{+0.64}_{-0.47}$	$0.16^{+0.19}_{-0.15}$	$-0.52^{+0.15}_{-0.13}$
CPL peak energy, keV	1118.09+113.30	850 ⁺¹²⁵⁹ -303	2300^{+350}_{-150}	360^{+44}_{-38}
BB temperature, keV	$140.45^{+8.48}_{-6.83}$	$175 \pm 25, 116$		
Peak flux, erg cm ⁻² s ⁻¹	$1.11^{+0.15}_{-0.11} imes 10^{-3}$	$\sim 5.0, 13.1^{+8.0}_{-4.4}$	$(2.8 \pm 0.3) \times 10^{-3}$	$1.61^{+0.29}_{-0.50} \times 10^{-3}$
Peak luminosity, erg s ⁻¹	$1.62^{+0.21}_{-0.16} imes 10^{48}$	$0.45(1.19) imes 10^{47}$	$(4.34 \pm 0.46) \times 10^{48}$	$1.2 imes 10^{47}$
Tail				
Tail duration	~150 ms	~380 s	~130 ms	$\sim 100 \text{ ms}$
Period, s		7.56		
QPO		1		
BB temperature, keV	$143.09^{+5.27}_{-5.38}$	~30		
CPL photon index Γ_{ph}	$-0.01^{+0.09}_{-0.08}$		$0.43^{+0.34}_{-0.40}$	~(-1)
CPL peak energy, keV	826.43+59.65		530 ± 80	~125
Fluence, erg cm ⁻²	$5.44^{+0.63}_{-0.52} imes 10^{-6}$	8×10^{-3}	$(2 \pm 0.3) \times 10^{-6}$	$\sim 10^{-6}$
Total fluence, erg cm ⁻²	$9.29^{+0.92}_{-0.90} imes 10^{-6}$	$0.87^{+0.50}_{-0.24}$	$(4.4 \pm 0.5) \times 10^{-5}$	$2^{+0.10}_{-0.26} imes 10^{-5}$
Total energy, erg	$1.35^{+0.14}_{-0.13} imes 10^{46}$	$7.88^{+4.53}_{-2.17} \times 10^{45}$	$(6.82 \pm 0.78) \times 10^{46}$	$1.5^{+0.07}_{-0.19} \times 10^{45}$
References		Hurley et al. (2005) Frederiks et al. (2007a)	Frederiks et al. (2007b) Ofek et al. (2006)	Mazets et al. (2008) Ofek et al. (2008)

GRB 200415A: Amati Relation

Yang, Jun, Vikas Chanda, BBZ et al. 2020 ApJ, 899, 106

Zhang, H.-M. et al. , ApJL

GRB 200415A: Amati Relation

Yang, Jun, et al . 2020 ApJ,

Zhang, H.-M. et al., ApJL

Yang, Y.-H. et al. , ApJL submitted

GRB 200415A: LAT Emissions

GeV afterglow of the GF

Vikas Chand et al., 2020, ApJ Submitted, arxiv 2008.10822

GRB 200415A: Benchmark

Properties	GF	sGRB
Location	\checkmark	
Tiny spectral lag	\checkmark	
Significant thermal spectra	\checkmark	
Spectral evolution parttern	\checkmark	
Similar to giant flare and its candidates	\checkmark	
Inconsistent with other short GRBs and contrived jet conditions		×
Small duration, energy, radius of emission region	\checkmark	
Significant outlier away from the short GRB track		×

GRB 200415A: Connection to GF Theory

Starquake model: the instability of the interior magnetic field ruptures the magnetar crust. The crossing time of Alfvén wave is $T_{spike} \gtrsim R_{NS}/V_A \gtrsim 0.1$ s (Feroci et al. 2001).

Magnetospheric instability model: the large-scale magnetic reconnection event will last $10^2 R_{NS}/c \sim 10^{-2}$ s (Parfrey et al. 2013).

The expected expanding fireball emission is consistent with the spectral lag result and spectral evolution pattern.

The radius of the emission source is calculated to be 27.80 km, which is similar to previous studies (e.g., Nakar et al. 2005; Ofek et al. 2006, 2008).

The magnetic field can be constrained to be
$$\leq 2 \times 10^{15}$$
G via $B(R_{NS} + \Delta R) \leq \left(\frac{8\pi E_{\gamma,iso}}{3\Delta R^3}\right)^{1/2}$

(Thompson & Duncan 1995).

Additional Smoking Guns?

GRB 200415A: Additional Smoking Guns?

Yes!

A few Nature papers in press (review).

Additional Cases?

Additional Cases?

Yang, Y.-S. et al in prep.

Additional Cases?

GRB 200415A + :=0.0003 •

 10^{10}

 10^{10}

1070

 $\stackrel{(0^{10}}{\mathbb{E}_{\mathrm{true}}}(\mathrm{erg})$

80 70

(VVO) (e+1)[H

 10^{12}

 10^{14}

 10^{10}

Yang, Y.-S. et al in prep.

Trouble Makers:

Unknown-Origin GRBs

• Short GRBs can be apparently long (because of extended emission/tails)

(so we can ignore the tail, and make a short GRB from a long one)

THE ASTROPHYSICAL JOURNAL, 655: L25–L28, 2007 January 20 © 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A.

Œ

MAKING A SHORT GAMMA-RAY BURST FROM A LONG ONE: IMPLICATIONS FOR THE NATURE OF GRB 060614

BING ZHANG,¹ BIN-BIN ZHANG,^{1,2,3} EN-WEI LIANG,^{1,4} NEIL GEHRELS,⁵ DAVID N. BURROWS,⁶ AND PETER MÉSZÁROS^{6,7} Received 2006 October 22; accepted 2006 December 13; published 2007 January 4

ABSTRACT

Unknown-Origin GRBs

- Short GRBs can be apparently long (because of extended emission/tails)
- Long GRBs can be apparently (fat-)short (because of tip of iceberg effect)

Plus, recent GRB 201015A (short+tails)

- Short GRBs can be apparently long (because of extended emission/tails)
- Long GRBs can be apparently short (because of tip of iceberg effect)

• But:

Long GRBs can **NOT** be genuinely short if it is really an accretion powered massive star collapsar

$$t_{\rm ff} \sim (\frac{3\pi}{32 {\rm G}\bar{\rho}})^{1/2} \sim 210 \text{ s} (\frac{\bar{\rho}}{100 \text{ g cm}^{-3}})^{-1/2}$$

Trouble Maker GRB XXXXX

Zhang, B.-B. et al 2020 in prep.

Everything looks like a long GRB, except for its definitely short duration!

Zhang, B.-B. et al 2020 in prep.

Summary

"Old-Type" short & long GRBs

- Precursors: all-wavelength <==
- Prompt Emission: optical, radio, (early) X-ray, γ -ray , GeV, TeV
- Afterglow : (early) X-ray, (early) optical, (deep) optical, radio, GeV
- SN
- Kilonova: optical, UV, (large sample)
- Host: optical , radio , (large sample)
- Neutrinos
- Gravitational Waves

"New-Type" GRBs

- Ultra-Long GRBs (~ hours, all wavelength, all time frames)
- Ultra-Soft GRBs (~ low Ep, thermal spectrum, all wavelength, all time frames)
- X-ray only GRBs (a.k.a. X-ray transient, Xue et al. 2019)
- GRB related to other unusual sources (e.g., FRBs ? Dai et al.; GWs;)
- Sub-threshold GRBs (more interesting if concidence w/ other messengers/wavelength) <==
- Temporally or spectrally peculiar GRBs (LL, extra component, etc)
- SGR GF GRB; <==
- Unknown-Origion GRBs (trouble makers) <==

HXMT FAST

. . . .

GECAM (12/10 4am Xichang) EP SVOM ET2.0

GRID Project @ Tsinghua & NJU