X-ray polarization study of supernova remnants

Ping Zhou (Nanjing University)

Collaborators and IXPE SNR group

- Patrick Slane (CfA, IXPE SNR coordinator)
- Riccardo Ferrazoli (INAF; Tycho & RX J1713) ightarrow
- Jacco Vink (Amsterdam; Cas A)
- Dmitry Prokhorov (Wurzburg; Vela Jr.)
- Stefano Silvestri (INFA; RCW 86)
- Yi-Jung Yang (National Central University)
- Niccolo Bucciantini (INAF)
- IXPE SNR topical working group
- ightarrow
- IXPE team

Estela Reynoso, William Cotton, David Moffet (radio polarimetry), Wenlang He

An end of stellar evolution — supernova remnant (SNR)

Credit: NASA/CXC

Cassiopeia A SNR with Chandra X-ray observatory

neutron star

Core-collapse Supernova

355

SNR — Nebula resulted from the interaction of SN materials with the interstellar medium

Sector 1

SNRs influence every component of the interstellar medium

- Kinetic energy: 10^{50} — 10^{52} erg
- Emission: radio to gamma-ray bands
- Gas: produce hot ionized medium (X-ray)
- Dust: factory + destroyer
- Cosmic rays: factory
- Magnetic fields: Amplify/modify

cosmic ray acceleration B x100

Metal-rich hot gas

~6000 km

For Cas A Shock velocity ~ 6000 km/s Metal mass ~ 2-4 Msun Heated CSM ~ 10 M_{sun} Kinetic energy ~ $1-2 \times 10^{51}$ erg (Vink +1996,2022)

SNRs as factories of cosmic rays

COSMIC RAYS FROM SUPER-NOVAE

By W. BAADE AND F. ZWICKY

MOUNT WILSON OBSERVATORY, CARNEGIE INSTITUTION OF WASHINGTON AND CALI-FORNIA INSTITUTE OF TECHNOLOGY, PASADENA

Communicated March 19, 1934

Walter Baade

Fritz Zwicky

Radio image of Cas A

X-ray image of SN1006 Contours: HESS TeV

Radio emission from GeV-energy electrons

X-ray emission from over 10 TeV-energy electrons

Are SNRs the primary sources of Galactic CRs?

Blasi 2013

- Two basic requirements
 - Energy: SNRs must transfer ~10% of SN explosion energy to CRs.
 - Maximum energy: some SNRs must accelerate CRs to PeV energy.

Importance of magnetic fields in CR acceleration

Diffusive shock acceleration of CRs

https://sprg.ssl.berkeley.edu/~pulupa/illustrations/

Magnetic fields trap the CRs near the shock

$$0 \text{ TeV}\left(\frac{B}{\mu\text{G}}\right) \left(\frac{M_{\text{ej}}}{M_{\odot}}\right)^{-1/6} \left(\frac{E_{\text{SN}}}{10^{51} \text{ erg}}\right)^{1/2} \left(\frac{n_0}{\text{ cm}^{-3}}\right)^{1/2}$$
ta-dominated phase time (Morlino+2016)

Fuse ISM,
$$B_0 \sim 1 \ \mu G \left(\frac{n_0}{\text{cm}^{-3}}\right)^{1/2}$$

Need the magnetic field amplification to increase $E_{\rm max}$ to the "knee" (3×10^{15} eV)

~1

Magnetic amplification in young SNRs

Narrow X-ray synchrotron filaments with widths $l = 1'' \sim 4''$

Sec. 1

X-ray synchrotron emission comes from multi-TeV electrons. Synchrotron loss timescale

$$\tau_{\rm loss} = 637/(B^2 E_e) \, {\rm s} \sim 20 \, {\rm yr} \ll {\rm SNR} \, {\rm age}$$

Filament width $l_{\rm loss} = v_d \tau_{\rm loss} \propto B^{-2} E_e^{-1}$

Strongly amplified $B \sim 10^2 \times B_{\rm ISM} \sim 0.1 \, {\rm mG}$ (Vink & Laming 2003)

Magnetic amplification in young SNRs

Cas A

Kepler

see Vink & Laming 2003, Parizot+ 2006

Credit: NASA/CXC/SAO

Tycho

SN1006

How are the magnetic fields amplified? What is the geometry of magnetic fields? Are they ordered or disordered?

Synchrotron emission (polarized) and Stokes parameters

Stokes parameters (linear polarization)

$$I = S_0 = I$$

$$Q = S_1 = Ip \cos 2\varphi$$

$$U = S_2 = Ip \sin 2\varphi$$

I : Total intensity

 φ (PA): Orientation of the polarization (polarization angle)

p (PD): Fraction of the polarization (polarization degree)

$$\varphi$$
 or PA = 0.5 $\arctan(U/Q)$ \perp magnetic orient p or PD = $\sqrt{Q^2 + U^2}/I$ magnetic turbuler

X-ray polarimetry — a new frontier

- X-ray polarimetry probes the electrons with the energy > TeV
- Measure B-field close to the shock front: $\tau_{\rm loss} = 637/(B^2 E) \, {\rm s}$
- Free from Faraday depolarization

Gas pixel detector — principle for X-ray polarimetry

Taverna & Turolla 2024

Incoming X-ray photon -> photoelectrons Photoelectrons tend to follow the X-ray polarization direction photoelectronic cross-section

$$\frac{d\sigma}{d\Omega} \propto \cos^2 \phi$$

 ϕ – azimuth angle relative to the electronic field direction

Photoelectron number reflects X-ray energy

Photoelectron distribution as a function of ϕ gives PA and PD

GPD measures coordinates, E, t, PA and PD for every photon

6 young SNRs observed with IXPE

SN 1680?

SN 1572

SN 1006

Tycho Ferrazzoli + 2023

SN1006 Zhou + 2023, 2025

Credits: Cas A: NASA/CXC/SAO/IXPE

Tycho : X-ray (IXPE: NASA/ASI/MSFC/INAF/R. Ferrazzoli, et al.), (Chandra: NASA/CXC/RIKEN & GSFC/T. Sato et al.) Optical: DSS Image processing: NASA/CXC/SAO/K. Arcand, L.Frattare & N.Wolk SN 1006 X-ray: NASA/CXC/SAO (Chandra); NASA/MSFC/Nanjing Univ./P. Zhou et al. (IXPE); IR: NASA/JPL/CalTech/Spitzer; Image Processing: NASA/CXC/SAO/J.Schmidt

RCW 86: Sjors Broersen

SN 393?

3000 yr

SN 185

Vela Jr. Prokhorov + 2024

RCW86 Silvestri + in prep.

~1 Ms for each pointing

IXPE's first science target — Cas A

Magenta – IXPE image (resolution ~ 30") Blue – Chandra image (resolution ~0.5")

Magnetic vectors over X-ray image green: highly significant region

Low PD in Cas A

Average PD = $2.5\% \pm 0.5\%$ for the SNR (5 σ)

Average PD = $4.5\% \pm 1.0\%$ at the rim (radio PD ~8-10%)

Highly turbulent B!—> Low PD

Magnetic fields are almost radially distributed. (B//shock normal)

Predicted image before the launch of IXPE Vink & Zhou 2018

3-6 keV pixels >2 σ , vectors> 3 σ , pixel size =84"

Vink+2022

IXPE observation of Tycho (SN 1572)

polarization degree and vectors (>1 σ) thick vectors (>2σ)

Chandra X-ray image

Credit: NASA/CXC/SAO

4-6 keV pixel size =60"

Ferrazzoli + 2023

significance map

Peak PD~20% at the NW Magnetic field is radially distributed

Extract nonthermal flux from Cas A and Tycho

Vink + 2022

Nonthermal flux fraction in 3–6 keV

17

IXPE observation of SN 1006

Average PD=22% (6.3 σ) Radial magnetic field

Zhou + 2023

Spectropolarimetric analysis

Different magnetic properties between young and old SNRs

old SNRs

 $B \perp$ shock direction

B orientation due to a compression of the ISM

postshock

CTA 1 + magnetic vectors (Radio; Dubner & Giacani2015)

3 Young SNRs

B // shock direction

 $B_{//}$ (postshock)= $B_{//}$ (preshock) B_{\perp} (postshock)= $4B_{\perp}$ (preshock)

Why radially distributed B in young SNRs

MHD turbulence can stretch the fields

Inoue+2013

Selection effect efficient acceleration of CRs when shock // B (higher density of CRs -> stronger emission; a.k.a., quasi-parallel acceleration)

West + 2017

20

Mechanisms for turbulent magnetic amplification

a. CR-induced instability (Bell 2004)

• CR energy is transferred to perturbed magnetic fields

(predicted for the pre-shock region, unclear for the post-shock)

b. turbulent dynamo due to density fluctuation

(Giacalone & Jokipii 2007, Inoue+2013, Xu & Lazarian 2017)

- highly depends on the density fluctuation level $\Delta \rho / \rho$ and scale $l_{\Delta \rho}$
- tends to create radial magnetic fields

21

PD and turbulence scales in young SNRs

			length scale of CR-induced instability	length scale of turbulent dynamo
	PD (rim) (%)	n_0 (cm^{-3})	l_{Bell} (cm)	$l_{\Delta B} \sim l_{\Delta \rho}$ density fluctuation sca
Cas A	4.5 ± 1.0	0.9 ± 0.3	8e16	\checkmark
Tycho	12 ± 2	$\sim 0.1–0.2$	3e16	\checkmark
SN 1006 NE	22.4 ± 3.5	$\sim 0.05 – 0.085$	2e17	X since SN 1006 NF in a nearly
				uniform medium

The turbulence scales are not resolved with IXPE(resolution of ~ 10¹⁸ cm at 2 kpc)

This can cause a depolarization

$$l_{\rm Bell} \sim 2 \times 10^{17} \, {\rm cm} \left(\frac{V_s}{5000 \,\,{\rm km/s}}\right)^{-3} \left(\frac{n_0}{0.05 \,\,{\rm cm}^{-3}}\right)^{-1} \left(\frac{E_{\rm max}}{100 \,\,{\rm TeV}}\right) \left(\frac{B_0}{3 \,\,\mu{\rm G}}\right) \qquad {\rm Bell \,\, 2004}$$

Magnetic turbulence is environment-dependent

turbulent dynamo

Can we justify this for a single SNR?

density fluctuation $\Delta \rho / \rho$

23

SN 1006 SW shows a variation of PD

XMM-Newton image + IXPE FOVs

Zhou+ 2025, submitted

24

X-ray and radio polarimetry probes different B-fields

- Radio polarimetry: predominately parallel B-field
- X-ray polarimetry: radial B-field
- **Different layers:** X-rays come from a thin layer immediately behind the shock

$$l_{\rm loss} = v_d \tau_{\rm loss} \propto B^{-2} E_e^{-1}$$

 Different B-fields: X-rays probe freshly amplified Bfield, radio likely reflects much of the pre-existing field

MeerKAT radio image + magnetic vectors (Cotton et al. 2024)

25

Unexpected tangential B-field in two older SNRs — compression?

RX J1713: Average PD= $12.5\% \pm 3.3\%$, maximum PD = $46\% \pm 10\%$: Average PD= $16.4\% \pm 5.2\%$, maximum PD = $34\% \pm 10\%$ Vela Jr.

SNR RX J1713 (SN 393?) PD image + magnetic vectors

Vela Jr. PD image + polarization vectors

34:00.0 36:00.0 Declination 0.00: E.S.S. (2016) RX J0852.0-40

10.0 8:49:00.0 50.0 20.0 40.0 48:30.0 30.0 **Right Ascension**

Ferrazzoli + 2024

Prokhorov + 2024

X-ray polarization results for SNRs

high density low density 355 yr

very low-density (<0.1 cm⁻³)

Prospects for X-ray polarization measurements of SNRs

- Limitation of current IXPE measurements
 - low-sensitivity

scheduled for launch in 2030

 30" angular resolution has not been exploited due to the low statistics eXTP will provide the PD and PA distribution with the sub-arcminute resolution for SNRs -> quantify turbulence scale and orientation

28

Summary

- IXPE measured six young SNRs and renewed our understanding of B in SNRs
- A range of PD=4.5% to 46% (very turbulent B to nearly ordered B) \bullet
- Magnetic turbulence and amplification are likely environment-dependent
- X-ray polarimetry probes amplified/turbulent B-fields, while radio polarimetry traces more extended regions influenced by ambient B-field.
- Radially distributed B in Cas A, Tycho, and SN1006, but tangential B in two older SNRs.
- Our results are new and not fully explained, demanding further theoretical and observational studies on magnetic turbulence.

