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• Weak lensing cosmology
• Systematic errors in weak lensing cosmology
– The intrinsic alignment
– Self-calibrating the intrinsic alignment



Gravitational lensing

• Pre-GR (e.g. 1912,
Einstein’s note)

• 1915, GR field equation
• 1919, Solar eclipse
– The magic number 2

1936, published paper on science.

1912 note. Also, 1915 letter to a friend. 



Gravitational lensing

Gravitational lensing depends on the lens mass, distances 
to the lens/source and the lens-source distance



Strong lensing

1979, the double quasar Q0957+561
Dennis Walsh, Robert F. Carswell and Ray J. Weymann



Weak lensing



convergence shear
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Weak lensing

e.g.Modern cosmology by Scott Dodelson
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In the weak lensing regime, shear is  
fixed by convergence (leading order) 



• DES Y1, 1708.01535



• DES Y1, 1708.01535
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Weak lensing with tomography:
A major cosmological probe, with greatest potential!



Weak lensing tomography
Chapter 14: Weak Lensing

Figure 14.3: The lensing power spectra constructed from galaxies split into three broad redshift bins: z < 0.7, 0.7 <
z < 1.2, and 1.2 < z < 3. The solid curves are predictions for the fiducial ⇤CDM model and include nonlinear
evolution. The boxes show the expected measurement error due to the sample variance and intrinsic ellipticity errors
(see text for details). The thin curves are the predictions for a dark energy model with w = �0.9. Clearly such a
model can be distinguished at very high significance using information from all bins in ` and z. Note that many more
redshift bins are expected from LSST than shown here, leading to over a hundred measured auto- and cross-power
spectra.

and Gaussian and non-Gaussian sample variance caused by imperfect sampling of the fluctuations
(Scoccimarro et al. 1999; Cooray & Hu 2001; Takada & Jain 2009). The non-Gaussian sample vari-
ance arises from the projection of the mass trispectrum weighted with the lensing e�ciency kernel.
In fact, most of the useful cosmological information contained in the lensing power spectrum lies
on small angular scales, which are a↵ected by nonlinear clustering. Therefore, the non-Gaussian
errors can be significant in weak lensing measurements, and cannot be ignored in the precision
measurements delivered by LSST.

The non-Gaussian errors cause two additional uncertainties in measuring the cosmic shear power
spectrum. First, they degrade accuracies in measuring band powers of the spectrum at each
multipole bin via the trispectrum contribution to the power spectrum covariance. Second, nonlin-
earities in the mass distribution cause correlations between the band powers at di↵erent multipoles,
decreasing the e↵ective number of independent degrees of freedom of multipoles measured from
LSST.

Takada & Jain (2009) investigated the impact of the non-Gaussian errors on the cosmic shear
power spectrum measurement using a dark matter halo approach. In the ⇤CDM scenario, the
cumulative signal-to-noise ratio for measuring the power spectrum over a range of angular scales,
from degrees down to a few arcminutes scale, can be degraded by up to a factor of two compared
to the Gaussian error case. Adding the tomographic redshift information slightly mitigates the
degradation, but the non-Gaussian errors remain significant.

Given the LSST measurements, accuracies of estimating cosmological parameters can be obtained
by propagating the statistical uncertainties of power spectrum measurements into parameter space.
The marginalized errors on individual parameters would be degraded by less than 10-20% after the
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Great potentials 

• Dark Energy Task force
• FoM: joint constraint on dark energy EoS



Approaches of
weak lensing measurement

• Cosmic shear
• Cosmic magnification
• Lensing of cosmic backgrounds



Weak lensing measurements: cosmic shear

Larger, deeper, wider
• -2000: Ng=O(105)
• 2000s: Ng=O(107):

CFHTLenS, SDSS, 
COSMOS, RCSLenS, etc.

• 2010s: Ng=O(108): KiDS,
DES, HSC,

• 2020s: Ng=O(109): CSST, 
Euclid, LSST, WFIRST, +

ELLIPTICITY AS AN ESTIMATOR OF SHEAR 301 

£2 = _jE^y__ (10.19) 
Qxx + Qyy 

Figure 10.6 shows different orientations of elliptical images and the associated 
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Figure 10.6. Definition of ellipticities ei and ei. Circular images have both ellipticities equal 
to zero. 

values of the e\ and 62. With these definitions, we can make more precise the 
statement at the end of Section 10.1 about correlations of ellipticities. Panel (a) in 
Figure 10.3 has two galaxies at d\ and 2̂̂  each with e\ positive; in panel (b) both 
galaxies have t\ negative. In both possible cases, then, the product ei(^1)61(^2) is 
positive if the x-axis is chosen along the direction connecting the two galaxies. The 
impossible case is depicted in panel (c) wherein the product is negative. Therefore, 
we do not expect lensing to produce 61(^1)61(^2) < 0. 

How are the elhpticities defined in Eq. (10.19) related to the shear defined in 
Eq. (10.16)? Let's assume that the source is spherical and compute the ellipticity 
of the image. Focusing on ei, we have 

where I have used the equality of Eq. (10.1). The integrals here are over the observed 
angles 6, while the integrands depend in part on the angle from which the photon 

3' started at the source, 63- For small angles, these are related via 9i = {A~ )ij9s_ 
To do the integrals, then, change dummy variables in the integral to 63, and write 
all occurences of ^̂  as {A~^6s)i' This leads to 

300 WEAK LENSING AND POLARIZATION 

^-^-^^ -^^ y (10.15) 
-72 1 - /̂  + 71 / 

The parameter n is called the convergence; it describes how an image is magnified. 
Although this magnification has many important ramifications (e.g., microlensing 
and multiple images) it is not what is important for the distortions studied in weak 
lensing. Rather, these distortions are governed by the two components of the shear^ 

All - A22 
71 = ^— 

72 = -A12. (10.16) 

Equation (10.15) says that the components of shear involve derivatives of 
Eq. (10.14) with respect to angle 6,^ The only dependence on 6 is in the argument 
of the potential, where x{x') = x'O (for the transverse components). Therefore, the 
derivative with respect to 9^ can be written as a derivative with respect to x^ (in 
our notation j) times x'- Therefore, 

^ .̂ - ^v - ( ""_;J^ _~l%^ )=^[ dx'^,, (f (XO) X' (1 - f ) • (10-17) 

So 7i and 72 are well-defined functions of the potential. The next section shows 
how they infiuence the shapes of galaxy images. 

10.3 ELLIPTICITY AS AN ESTIMATOR OF SHEAR 

We expect lensing to turn circular images into elliptical ones. To describe this effect, 
then, we need to come up with quantitative measures of ellipticity, and then see how 
these are related to the components of shear defined above. The simplest measure 
of ellipticity starts with the definition of the quadrupole moments of an image. 
Imagine centering an image at the 0^ — Oy origin such that it has no dipole moment 
ii^x) = (Oy) = 0 where angular brackets are averages over the intensity). Then the 
quadrupole moments are defined as 

q,j = j dHu,{e)e^ej. (lo.is) 

A circular image has qxx = Qyy and Qxy = 0. Therefore, two good measures of 
ellipticity are 

Qxx Qyy 
^1 = 7 

Qxx I Qyy 

^The derivative is formally with respect to the observed angle 0, while the right-hand side 
of Eq. (10.14) depends on the potential at the true position of the light ray. In principle, then, 
the derivatives which go into the definition of Aij are quite complicated. In practice, though, 
deflections are sufficiently small that we can ignore the distinction between the final angle 6 and 
the actual angle everywhere along the trajectory. Therefore, on the right-hand side of Eq. (10.14) 
we evaluate the potential along the undistorted path parameterized by 9. 
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Figure 4: Detection of ellipticity correlations. The upper panels show the measured
ellipticity correlations as a function of angle for three independent fields covering a total
of 1.5 square degrees (ξ1 at left and ξ2 at right). Markers have been slightly offset hori-
zontally for clarity. From left to right in each bin are fields at 11h38m, -12◦33′, 23h48m,
+00◦57′, and 04h29m, -36◦18′ (J2000). In each field, roughly 45,000 faint galaxies passed
all the filters and significance tests, from an initial catalogue of about 150,000 objects. Er-
rors shown are 68% confidence intervals determined from 200 bootstrap-resamplings of the
galaxy catalogues. The lower panels show the mean of the ellipticity correlation functions
over the three fields (black), with 1σ errors derived from the variance between fields. The
behavior as a function of angle matches that expected from weak gravitational lensing by
large-scale structure. The lower panels also contain several null tests of systematic error.
The cross-correlation of the galaxies ξ3 should vanish in the absence of systematic error, and
in fact is everywhere consistent with zero (red). The ellipticity correlations of stars (blue)
are everywhere consistent with zero except in the innermost bin of ξ1. The effect of nonzero
stellar correlations on the galaxy correlations is illustrated by the star-galaxy correlation
(green), which is very close to zero in this bin. An additional test of systematics, a search for
preferential alignment of galaxies with the CCD axes, is also null. Though galaxy ellipticity
correlations continue to rise at smaller angles, the smaller number of galaxy pairs makes
the measurement noisier, there are few closely-spaced stars to assess systematic error, and
the theoretical interpretation on small scales is difficult.

Wittman+, 2000 HSC: Hikage+, 2018
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êa,⇥ is the cross component, W is a per-object weight, and
S is either a multiplicative bias correction (IM3SHAPE) or a
shear response correction (METACALIBRATION). The sums
are each computed for a subset of galaxy pairs a, b within each
angular separation �✓ for each ✓ = |~✓b � ~✓a|. These angu-
lar bins are chosen to be logarithmic with a total of 20 bins
between 2.5 and 250 arcmin, though only a subset of these
angular bins are used in parameter estimation, as discussed in
Sec. VII A. All two-point calculations are done with the pub-
lic code TREECORR15 [89]. The estimator for ⇠± is in prac-
tice calculated quite differently for the two shape catalogs, be-
cause they each estimate the ellipticity of an object and any
shear calibrations via fundamentally different processes.

For METACALIBRATION, the kth component of the unro-
tated ellipticity is given by êk = ek � heki, where hei is
the residual mean shear in a given tomographic bin. The
METACALIBRATION catalog does not use a galaxy weight
(W = 1), and the shear response correction (S) is given by
S ⌘ R = R� + RS . In general R is a 2x2 matrix, where
Rii = R�,ii + RS,ii is the sum of the iith element of the
measured shear response and shear selection bias correction
matrix for METACALIBRATION. We simply use the average
of the components of R, where R = (R

11

+ R
22

)/2. For
IM3SHAPE, êk = ek � ck � hek � cki, where c is the addi-
tive shear correction and he � ci is the residual mean shear
for a tomographic bin. The IM3SHAPE catalog uses an em-
pirically derived weight (W = w), and a multiplicative shear
correction S = 1 + m, where m is defined irrespective of the
ellipticity component. The residual mean shear is discussed
in Appendix A, with typical abs. values of 1 to 9 ⇥ 10

�4 per
tomographic bin. For IM3SHAPE, the typical mean value of c
is 0.4 to 2.9 ⇥ 10

�4. For more details about the calculation of
c, w, m, and R, see [39].

The redshift distribution of each tomographic bin for the
METACALIBRATION measurements is shown in Fig. 2. The
redshift boundaries, effective number density, and per compo-
nent �e of each tomographic bin for METACALIBRATION are
given in Table I. Due to the inherent weighting of each object
in the estimator in Eq. (4), the objects contributing to the n(z)

for a tomographic bin have been weighted by the factor WiSi.
We show the measured two-point correlation function ⇠±

for each shape catalog in Figs. 3 – 5. Scales not used to
constrain cosmological parameters are shaded in Fig. 4 & 5.
This is the first measurement to correct, through the metacal-
ibration process, the shear selection effects RS , e.g., due to
photo-z binning in the data. This effect can be only roughly
approximated in traditional image simulation calibrations by
assigning redshifts based on the original redshift measurement
of the input objects, which is not the same as the redshift mea-
surement used in the data and not even necessarily correlated
with magnitude or color in a natural way in the simulation.16

15 https://github.com/rmjarvis/TreeCorr
16 We preserve the original COSMOS magnitudes of objects in the simula-

tions used to calibrate IM3SHAPE, so the assigned redshifts do correspond
to the flux and morphology of the simulated image.
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FIG. 3. The measured non-tomographic shear correlation function
⇠± for the DES Y1 shape catalogs. The best-fit ⇤CDM theory line
from the fiducial tomographic analysis is shown as the same solid
line compared to measurements from both catalogs.

The measured selection effects RS vary in each redshift bin
from 0.007 (lowest z-bin) to 0.014 (highest z-bin), which can
be compared to the shear response correction R� in the four
tomographic bins that ranges from 0.72 (lowest z-bin) to 0.56
(highest z-bin). The RS is comparable to the Gaussian prior
width on the multiplicative bias of 0.013 for the METACAL-
IBRATION catalog. This effect can also be compared to the
selection bias correction with no tomographic binning, which
is 0.011. Thus, the inclusion of the selection bias correction
calculated from the four versions of BPZ based on the sheared
photometry from METACALIBRATION is likely a significant
contribution to the corrected selection bias, and the additional
computational resources and complexity introduced are war-
ranted.

V. COVARIANCE MATRIX

The calculation of the covariance matrix of ⇠± and tests to
validate its quality can be found in [58]. A large part of our
covariance is caused by the shape-noise and Gaussian compo-
nents of the covariance, i.e., covariance terms that involve at
most two-point statistics of the cosmic shear fields. To guar-
antee that our covariance model captures these error contribu-
tions correctly, the Gaussian parts of the model are compared
to a sample covariance from 1200 Gaussian random realiza-
tions of the shear fields in our tomographic bins. The un-
certainties on cosmological parameters projected from each
of these covariances agree very well [58]. The non-Gaussian
parts of our covariance, i.e., the parts involving higher order
correlations of the shear field, are modeled in a halo model
framework [90]. To measure the influence of realistic survey
geometry on the covariance matrices, covariance matrices de-
termined in three different ways are compared: 1) the full halo
model covariance, 2) a sample covariance from 1200 lognor-
mal realizations (see Sec. III C) of the convergence field in
our tomographic bins that assumes a circular survey footprint,

Publications of the Astronomical Society of Japan, (2014), Vol. 00, No. 0 19

Fig. 4. Comparison of the measured tomographic shear power spectra with our theoretical model with best-fit values for the fiducial ⇤CDM model. Best-fit
IA power spectra of C

GG

(dotted), �C

GI

(short dashed), and C

II

(long dashed) as well as power spectra arising from PSF leakage and PSF model error
[equation (11)] (dash-dotted) are also plotted. The redshift range of z

best

in each tomographic bin is =[0.3,0.6], [0.6,0.9], [0.9,1.2], and [1.2,1.5] from 1
to 4. The right-bottom panel shows the measured non-tomographic cosmic shear power spectrum and the model spectra with the best-fit values from the
tomographic analysis. The C

II

term is so small that it is absent from all panels except for 11.

parameters account for parameters that are dominated by the
parameters whose posteriors are driven by data rather than the
priors. We find that Ne↵ is 3.1, which results in DOF of 56.9.
The difference between Ne↵ and the total number of parame-
ters in our model reflects the fact that a number of our model
parameters are prior-dominated.

We find that our model well reproduces the observed power
spectra quite well. Our maximum-likelihood case in the fiducial
⇤CDM model has a minimum �2 of 45.4 for 56.9 DOF (p-value
is 0.86), which is a very acceptable fit5. Using the covariance

5 Our choice of using N

eff

to compute the degrees of freedom is different
from the choice of using the total number of parameters made by contem-
porary weak lensing analyses (Troxel et al. 2017). Regardless of which
definition we use, it does not change our conclusion about the goodness of
fit. For instance, even if we conservatively include all parameters without

assuming Planck cosmology, the total signal-to-noise ratio in
the four bin tomographic lensing spectra is 15.6 in the fiducial
range of multipoles. The signal-to-noise ratios of the cosmic
shear auto spectra in individual redshift bins are 4.9, 9.2, 12.3,
and 11.5 from the lowest to the highest redshift bins, respec-
tively. Although the number of source galaxies in the higher
redshift bins is less than in the lower redshift bins, the signal-
to-noise ratios of the measurements are higher due to the higher
amplitudes of the cosmic shear power spectra.

We derive marginalized posterior contours in the ⌦m-�8

plane from our tomographic cosmic shear power spectrum anal-
ysis in the fiducial ⇤CDM model. Constraints from cosmic
shear are known to be degenerate in the ⌦m-�8 plane. Cosmic

the Gaussian priors to N

eff

, we have 53 DOF and the resulting p-value is
0.76, which is also a very acceptable fit.

DES: Troxel+, 2017CFHTLenS: cosmic shear two-point and three-point correlation 7

Table 1. The parameters sampled under the weak-lensing
CFHTLenS posterior. The second column indicates the (flat)
prior ranges, for the three models analysed in this work (flat
ΛCDM, flat wCDM and curved ΛCDM).

Param. Prior Description

CFHTLenS, ΛCDM

Ωm [0, 1.2] Total matter density
σ8 [0.2, 1.5] Power-spectrum normalisation
Ωb [0, 0.1] Baryon density
ns [0.7, 1.3] Spectral index of prim. density fluct.
h [0.4, 1.2] Hubble parameter

Additional parameter for wCDM

w0 [−3.5; 0.5] Const. term in dark-energy eq. of state

Additional parameter for curved ΛCDM

Ωde [0, 2] Dark-energy density

Planck, the reionisation optical depth τ and the Sunyaev-
Zel’dovich (SZ) template amplitude ASZ are added to the
parameter vector. In this case, we use ∆2

R as the primary
normalisation parameter, and calculate σ8 as a derived pa-
rameter. Moreover, when WMAP9 is added to CFHTLenS,
we use flat priors which cover the high-density regions and
the tails of the posterior distribution well. The priors of Flat
ΛCDM, Flat wCDM and Curved ΛCDM models are sum-
marised in Table 1.

We choose and test the angular scale range together
with the theoretical model using the CFHTLenS Clone sim-
ulations. More details can be found in App. A1.

4 CFHTLENS WEAK-LENSING RESULTS

In this section we present the measurement of second- and
third-order aperture-mass measures from CFHTLenS. We
show results on the cosmological parameters Ωm and σ8,
the parameters that are best measured by weak cosmolog-
ical lensing. We obtain constraints from second- and third-
order statistics, and from their combination. With current
surveys, these two parameters are near-degenerate, where
the direction of degeneracy is approximately a power law,
given by the amplitude parameter Σ8 = σ8(Ωm)α. We sum-
marise our results on this derived parameter at the end of
Sect. 5.

4.1 Second–order measures

We report updates of the second-order measurements and
resulting cosmological parameters compared to K13. First,
we add a measurement of the aperture-mass dispersion us-
ing the Gaussian filter (14), which is the filter function we
employ for the third-order aperture-mass moment. The top
panel of Fig. 1 shows the E-/B-modes in the angular scale
range 2 to 70 arcmin. This is to combine measurements
with the same smoothing function. Note that there is no
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Figure 1. Second-order shear functions measured from
CFHTLenS mosaic data. Black filled symbols: E-mode; red open
symbols: B-mode. The results are compared to the theoretical pre-
diction using the WMAP9 cosmology (dashed line), and the E-/B-
mode from the Clone (dotted lines). Upper panel: The aperture-
mass dispersion using the Gaussian compensated filter, as a func-
tion of smoothing scale θ. Lower panel: Orthogonalised COSEBIs
(absolute values), ordered by increasing variance. as a function of
orthogonal mode number m.

necessity for that: for combinations of second- and third-
order measures to obtain the most stringent cosmological
parameter constraints, we use the optimal second-order pure
E-mode measure. These are the so-called COSEBI (Com-
plete Orthogonal Shear E- and B-mode Integral) modes
(Schneider et al. 2010) with the logarithmic filter, for the
full available range of angular scales, from 10 arcsec to 250
arcmin. This measure was presented in K13. The COSEBI
modes are strongly correlated, which makes visual inspec-
tion of the data and comparison to the prediction diffi-
cult. Therefore, we show uncorrelated data points Eortho

m

as orthogonal transformation of the COSEBIs En, E
ortho
m =

SmnEn, where S is an orthogonal matrix, SS
T = 1. The

result is presented in the lower panel of Fig. 1. Increasing
modes m have larger error bars, which correspond to the el-

c⃝ 2009 RAS, MNRAS 000, 1–18

CFHTLenS, Fu+ 2014



KiDS-450. Hildebrandt +, 2016

16 Hildebrandt, Viola, Heymans, Joudaki, Kuijken & the KiDS collaboration

Figure 5. Tomographic measurements of ⇠+ (upper-left panels) and ⇠� (lower-right panels) from the full KiDS-450 dataset. The
errors shown here correspond to the diagonal of the analytical covariance matrix (Section 5.3). The theoretical model using the best-fit
cosmological parameters from Table F1 is shown (solid) which is composed of a cosmic shear term (GG, dotted), and two intrinsic
alignment terms (GI, dot-dashed, and II, dashed).

add in any prior information through h. This is necessary as
non-CMB analyses usually report constraints in terms of h
instead of ✓MC.

For our top-hat prior on ⌦bh2 we use big bang nucle-
osynthesis constraints from Olive et al. (2014), again adopt-
ing a conservative width ±5� such that 0.019 < ⌦bh2 <
0.026. Our other prior choices are broad.

The best-fit e↵ective �2 is defined as �2
e↵(✓̂) =

�2 lnLmax, where ✓̂ is the vector of the model parameters

that yields the maximum likelihood Lmax. For purposes of
model selection, we use the Deviance Information Criterion
(DIC; Spiegelhalter et al. 2002, also see Joudaki et al. 2016
for further details):

DIC ⌘ �2
e↵(✓̂) + 2pD , (13)

where pD = �2
e↵(✓) � �2

e↵(✓̂) is the Bayesian complexity,

which acts to penalise more complex models. �2
e↵(✓) repre-

sents �2 averaged over the posterior distribution. The di↵er-

MNRAS 000, 1–49 (2016)

z
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Fig. 1. Tomographic cosmic shear power spectra of EE (red filled circles), BB (blue open triangles), and EB (yellow crosses) modes. The galaxy samples are
divided into four tomographic redshift bins using the Ephor AB photo-z code. The redshift ranges of the four tomographic bins are set to [0.3, 0.6], [0.6, 0.9],
[0.9, 1.2], and [1.2,1.5], for binning number 1 to 4 (see also Table 1). The right-bottom panel shows the non-tomographic cosmic shear power spectrum.
The multipole ranges of ` < 300 and ` > 1900 (shaded regions) are excluded in the cosmological analysis. The combined total detection significance of the
tomographic EE-auto spectra is 16� in the range of 300 < ` < 1900 (unshaded regions), whereas both BB and EB-mode spectra are consistent with zero.

10% of the current statistical errors at least over the range of
` of interest, 80 < ` < 2000. We also confirm that the input
values of ⌦m, �8, and S8 are successfully recovered from the
mock catalogs. Specifically, from the analysis of the mock cat-
alogs we obtain ⌦m = 0.292± 0.014, �8 = 0.801± 0.020, and
S8 = 0.791± 0.005, which are consistent with the input val-
ues, ⌦m = 0.279, �8 = 0.82, and S8 = 0.791 to within the 68%
credible interval. The credible intervals (error bars) are roughly
1/

p
100 of the accuracy we can achieve with the HSC first year

shear catalog.

We note that the cosmic shear (E-mode) power spectrum is
related to the shear correlation functions ⇠+ and ⇠� as

⇠±(✓) =
1

2⇡

Z
d`` C`J0,4(`✓), (7)

where Jn(x) is the n-th order Bessel function of the first kind.
While mathematically the cosmic shear power spectrum carries
the same information as the shear two-point correlation func-
tions for a full-sky uniform survey, this is not exactly true in
finite-sky data. In addition, the covariance of the power spec-
trum is diagonal in Gaussian fields, whereas the covariance
of the two-point correlation functions contains significant non-
diagonal elements even for Gaussian fields. Since the Gaussian
error still dominates in the current cosmic shear measurements,
the statistical independence is high among different ` modes.

3.2 Blinding

We have entered an era of precision cosmology. With a grow-
ing number of cosmological probes, one has to carefully guard
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Fig. 5. Marginalized posterior contours in the ⌦

m

-�
8

plane (left) and in the ⌦

m

-S
8

(↵ = 0.45) plane (right), where S

8

(↵) ⌘ �

8

(⌦

m

/0.3)

↵, in the fiducial
⇤CDM model. Both 68% and 95% credible levels are shown. For comparison, we plot cosmic shear results from KiDS-450 with correlation function (CF)
estimators (Hildebrandt et al. 2017) and with quadratic estimators (QE) (Köhlinger et al. 2017) and DES Y1 (Troxel et al. 2018) with the same set of cosmological
parameters and priors as adopted in this paper, as well as WMAP9 (Hinshaw et al. 2013) (yellow) and Planck 2015 CMB constraints without CMB lensing (Planck
Collaboration et al. 2016) (purple).

Fig. 6. The 68% credible interval on S

8

(↵ = 0.5) from the HSC first-year data in the ⇤CDM model as well as from several literature.

shear can tightly constrain a combination of cosmological pa-
rameters S8(↵) ⌘ �8(⌦m/0.3)↵, which we adopt to quantify
cosmological constraints from the HSC first year data. By car-
rying out a linear fit of the logarithm of the posterior samples
of ⌦m and �8, we find that the tightest constraints for S8 are
obtained with ↵ = 0.45. However, the previous studies by
DES (Troxel et al. 2017) and KiDS (Hildebrandt et al. 2017;
Köhlinger et al. 2017) have presented constraints on S8 with
↵ = 0.5. To present best constraints as well as constraints that
can be directly compared with these previous cosmic shear re-
sults, in this paper we present our results of S8 both for ↵=0.45

and ↵= 0.5.

In Figure 5, we show our marginalized constraints in ⌦m-
�8 and ⌦m-S8(↵ = 0.45) planes. As expected, there is no
strong correlation between ⌦m and S8. We find S8(↵=0.45)=

0.800+0.029
�0.028 and ⌦m = 0.162+0.086

�0.044. Our HSC first-year cos-
mic shear analysis places a 3.6% fractional constraint on S8,

which is comparable to the results of DES (Troxel et al. 2017)
and KiDS (Hildebrandt et al. 2017). For comparison, we find a
slightly degraded constraint on S8(↵ = 0.5) = 0.780+0.030

�0.033 for
↵ = 0.5. We compare our constraints in the ⌦m-�8 and ⌦m-
S8(↵ = 0.5) planes with cosmic shear results from DES Y1
(Troxel et al. 2018) and also from KiDS-450 with two differ-
ent methods, correlation functions (CF; Hildebrandt et al. 2017)
and quadratic estimators (QE; Köhlinger et al. 2017). Note that
the plotted results from DES Y1 use the same set of cosmo-
logical parameters and priors as adopted in this paper, and are
different from the fiducial constraints in Troxel et al. (2018).
For the KiDS results, we show the same constraints as shown in
the literature but not corrected for the noise covariance (Troxel
et al. 2018). Figure 6 compares the values of S8(↵ = 0.5) and
their 1-� errors among recent cosmic shear studies. We find
that there is no significant difference between the S8 values ob-
tained by these independent studies. Our result for S8 is smaller

Hikage+, 2018. HSC



• But 20 years after the first detections,  
cosmic shear surveys still can not detect 
dark energy independently

• In contrast, BAO (2005-) already confirmed 
the existence of dark energy independent of 
any other methods. 



Precise ≠ accurate!

statistical error

?



Challenges to cosmic shear cosmology
• Systematic errors in observational measurement
– Galaxy shape measurement (e.g. GREAT3 test)
– Galaxy intrinsic alignment (e.g. Troxel et al. 2015 review)
– Photo-z error (in particular outliers)
– Other knowns and unknowns (e.g. LSST science book)

• Systematic errors in theoretical modeling
– Baryon effects (non-gravitational processes such as gas
cooling, SN and AGN feedback, etc.)

– Nonlinear and non-Gaussian evolution
– Second order corrections: source-lens clustering, Born
deviation, lens-lens coupling, reduced shear, etc.



One example: baryonic effect

Schneider+ 1910.11357



Challenges to cosmic shear cosmology
• Systematic errors in observational measurement

– Galaxy shape measurement (e.g. GREAT3 test)

– Galaxy intrinsic alignment (e.g. Troxel et al. 2015 review)

• ZPJ 2010a; 2010b; Meng+ 2018; Yao+ 2019,2020

– Photo-z error (in particular outliers)

• ZPJ+ 2010; Le Zhang+ 2016

– Other knowns and unknowns (e.g. LSST science book)

• Magnification: ZPJ & Pen 2005, 2006; Yang & ZPJ 2011; Yang+ 2015; 2017;

ZPJ+2018; ZPJ+ 2019

• Systematic errors in theoretical modeling

– Baryon effects (non-gravitational processes such as gas cooling, SN and
AGN feedback, etc.).    Jing, ZPJ+ 2006

– Nonlinear and non-Gaussian evolution

• Yu+ 2011, 2012, 2016; Liu+ 2020; Chen+ 2020;  Qin+ 2020

– Second order corrections: source-lens clustering, Born deviation, lens-
lens coupling, reduced shear, etc.  Yu+ 2015



Galaxy intrinsic alignment
• Galaxy intrinsic alignment could mean
– Galaxy number distribution aligned with something
– Galaxy shape aligned with something. Spatially correlated



Impact on weak lensing statistics

II GI



II/GI in simulations and theoretical models

Jing 2002 Xia+ 2017

Z=0 Z=1

Linear alignment model
• Hirata & Seljak, 2004
With bias correction
• Xia+ 2017

Meng+ 2018



II and GI in observations

Halo 1 Halo 2

Okumura+ 2009 Okumura & Jing 2009



Intrinsic alignment
• Depend on galaxy properties (types, color, luminosity, etc)
and redshift

• May have different origins (early/late)
• Many models�each with multiple nuisance parameters)
• Significant bias in cosmological constraints

Kirk+ 2012 Yao+ 2017



Mitigating Intrinsic alignment in cosmic shear surveys

• Template fitting (adopted in most data analysis)
– with model dependence

• Nulling in redshift space (Joachimi & Schneider 2008, 2009)
– but loss of information

• Self-calibrations to separate G and I model indepdently
– ZPJ 2010a, Yao+ 2019, Yao+2020; ZPJ 2010b, Meng+ 2018
– Flip over galaxy pair, compare density-shape
correlation, separate G/I

g S=G+I

S=G+I g

Observer
1 2

g(1)G(2) > g(2)G(1)

g(1)I(2)=g(2)I(1)

z

Same photo-z bin



First application: KiDS450/KV450
Yao Ji(��)+ 2019

15M, 450 deg^2, 0.1<z<0.9

6 Ji Yao et al.

Figure 3. The measurements of the observables of SC, in the four redshift bins. The shape-galaxy correlations w�g are shown in blue dots, and the shape-galaxy
correlations with the selection w�g |

S

are shown in orange squares. The redshift bin numbers from 1 to 4 are in the labels. For most of the angular bins there
is a clear separation between the two correlation functions, representing the drop of the lensing signal related with Eq. (5), due to the selection of Eq. (14).

3.2 Qi measurements

We present the measurement of Qi for KiDS450 in Fig. 1 and Fig. 2.
The fiducial cosmology for Eq. (5) is assumed to be either KiDS450
cosmology (here) or KV450 cosmology (later in this paper) de-
pending on which survey data we are using. The detailed values are
shown in Table 1.

For proper usage of SC for KiDS450 data, one needs to use the
photo-z distribution nPi (z

P), in which the photo-z zP is given in the
KiDS450 shear catalog as zB , the peak value of the PDF (probability
distribution function) from the BPZ (Bayesian Photometric redshift)
code (Benitez 2000; Hildebrandt et al. 2017). Not only so, we also
need the full PDF p(z |zP) according to Eq. (10), as well as the true-z
distribution ni(z) or ni(�(z)) according to Eq. (7a) and (7b). The
full PDF p(z |zP) should also be given from the photo-z estimation
and the true-z distribution ni(z) should be given from stacking the
PDFs of all the galaxies.

However, we point out that for this work, this approach is
not applicable. According to Hildebrandt et al. (2017), the stacked
redshift distribution ni(z) requires calibration due to the limit of
the photo-z techniques at the current stage. The fiducial calibration
method for KiDS450 and KV450 is the DIR (direct calibration, with
spectroscopic redshift) method. After the calibration, the redshift
distribution ni(z) is expected to shift to a more accurate position.
But due to the algorithm of SC, which requires not only the photo-z

zB , but also the connection between photo-z and the true redshift
p(z |zP), which can not be calibrated with the DIR method, for each
specific galaxy. Thus if we use the uncalibrated p(z |zP) and the
calibrated ni(z) together, it will lead to some bias that is not easy to
specify.

Therefore, in the calculation of Eq. (5) and (10), instead of
using the PDFs given by the BPZ code for each single galaxy, we
choose to use the Gaussian model (13) that we previously used,
so that our SC method is self-consistent, avoiding the usage of the
calibrated ni(z) and the uncalibrated p(z |zP) simultaneously. The
photo-z bias parameter �z is set to be 0, while for the photo-z
scatter �z , instead of using the commonly assumed value 0.05, we
use�z = 0.082 for KiDS450 and�z = 0.061 for KV450, borrowing
the results from Wright et al. (2018). For future photo-z techniques
when the estimation for the PDFs and the best-fit (zB from BPZ for
example) are more accurate, we can directly use the PDFs instead
of applying such a photo-z model.

With the above information of photo-z distribution and PDFs
from data, we are able to calculate the quantity Qi , which is shown
in Fig. 1 and Fig. 2, for the lensing-IA separation later. The index i is
for photo-z binning, same as in KiDS450 Hildebrandt et al. (2017),
namely the 0.1 < zP < 0.3, 0.3 < zP < 0.5, 0.5 < zP < 0.7 and
0.7 < zP < 0.9 for the four redshift bins. The shaded areas are the
angular scale cut, so that we only use 50 < ` < 3000, which is our
main interest for cosmic shear in the current stage. This range is a
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Separating Intrinsic Alignment Signal and Lensing Signal 7

Figure 4. This figure shows, for KiDS450 data, the measurements of the pure lensing signal wGg and the pure IA signal wI g for the four redshift bins,
presented in the four panels with the bin number in the labels. The orange up-triangles are the measured wGg signals, and the blue down-triangles are the
measured wI g signals, using Eq. (17) and (16) with measurements shown in Fig. 1 and 3. The green curve and the red curve are the theoretical predictions
with KiDS450 best-fit cosmology shown in Table. 1, with the DIR redshift distribution. The disagreements between the measurements and the theoretical
predictions are mainly due to photo-z quality (which can be shown with the improvement with KV450 data later). Also, we point out that by comparing the
two low-z bins and two high-z bins, as the photo-z outlier rate decreases, the agreement tends to improve.

little larger than the range of stage III surveys as we want to have a
preview of the behavior of IA. There is some angular dependency
on ` for Qi , while this dependency is more and more insignificant
as we go to higher redshift, or higher bin index i. We also showed
in Yao et al. (2019) that the minimum and maximum values for
Qi are very close in the same redshift bin for future surveys like
LSST. Therefore in this work, we use the averaged value of Qi for
the purpose of lensing-IA separation. The average value is Q̄i ⇡
[0.588, 0.557, 0.615, 0.650] for KiDS450. According to Wright
et al. (2018), there is still a 10% � 20% redshift outlier problem
that can not be addressed by the above Gaussian PDF model. This
outlier will reach to redshift range far outside the chosen bin, and is
expected to lead to some bias in the Qi estimation by a�ecting ⌘i(z)
in Eq. (10), as well as the measurement of power spectra (2-points
correlation function in this work, see the next section) in Eq. (7a) and
(7b). We will leave details of this potential bias for future study, but
we will discuss how this redshift outlier can bias the results of SC in
this work. We applied a wider selection of the photo-z bins in order
to alleviate the problem. For future surveys, as the error in photo-z
decreases, the redshift scatter �z will be smaller and the outlier
rate will also decrease. So we broaden the redshift bins in KiDS450
data to simulate this improvement in the future. The redshift bins

after the broadening are 0.1 < zP < 0.5 and 0.5 < zP < 0.9, with
the associated values Q̄i ⇡ [0.655, 0.674]. We then apply the same
binning to KV450 data to see the improvements with better photo-z
Wright et al. (2018), with the resulting values Q̄i ⇡ [0.638, 0.574].
The improvements will be shown together with the measurements
of the correlation functions in Section 3.4.

3.3 Correlation functions

We perform the measurements of the correlation functions as de-
scribed in Eq. (18), for both the shape-galaxy correlation w�g and
the one with the selection w�g |S , where the selection function is
given by Eq. (14). We included a cartoon in Appendix. A to ex-
plain the physical meaning behind this selection, in support of the
equations.

We use the TreeCorr code Jarvis et al. (2004) to calculate the
correlations in Eq. (18), in order to get (16). To account for the shape
noise and sample variances correctly, we use the jackknife resam-
pling method for this purpose. We applied 453 jackknife regions,
using each KiDS450 tile as a jackknife region (Hildebrandt et al.
2017). The estimated size of a jackknife region is at ⇠ 1 deg level.
To avoid the edge e�ect of the jackknife regions (Mandelbaum et al.
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Application to DECaLS DR3
23M, 4200 deg^2 (g,r,z), 0.1<zP<0.9



Application to DECaLS



Application to DECaLS

G
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Application to DECaLS: red galaxies

G
I



Application to DECaLS: blue galaxies
Null detection

G
I



Application to DECaLS:
compare with the nonlinear tidal alignment model



Caveats

• Photo-z
• Selection/mock
• Covariance matrix
• More robust tests/discriminations of IAmodels

• DR8
• Cosmic shear optimized surveys



Summary

• Weak lensing cosmology
• Systematic errors in weak lensing cosmology
– The intrinsic alignment
– Self-calibrating the intrinsic alignment
– Detected IA in KiDS450/KV450 & DECaLS DR 3
– Detected the redshift and color dependence

– IA, an emerging tracer of LSS�stay tuned)


