

Galactic Cosmic Rays: From MeV to PeV

Ruizhi Yang University of Science and Technology of China

- **1. Galactic Cosmic rays: spectra and distributions**
- 2. Low energy CRs (LECRs)
- **3. PeV CR sources (PeVatrons)**
- 4. Prospect

- Cosmic Rays: Relativistic particles (mainly protons) in interstellar medium (ISM)
- Consensus
- Single power law spectrum from 10 GeV (10^{10} eV) up to 1 PeV (10^{15} eV)

• Energy-dependent confinement in the Galactic halo

• Supernova remnants (SNR) as sources

Cosmic Ray Spectra of Various Experiments

https://www.physics.utah.edu/~whanlon/spectrum.html

Detection method

• Direct measurement (ballon, satellite or extensive air shower array), measure the local spectrum and anisotropy

• Indirect measurement (via Gamma-rays). spectrum and distribution in the Galaxy

Direct measurement

Direct measurement

Phys. Rev. Lett. 120, 021101 (2018)

From gamma-rays

• Gamma-ray emission (in molecular clouds or diffuse):

Point sources+ CR interaction with ambient gas + ICs +isotropic

- CR interaction with gas dominates in dense environment.
- Gamma-ray map + gas distribution -> CR distribution

gamma-rays from giant molecular clouds (GMCs)

- Gamma-rays show good correlation with gas (CR uniformly distributed inside GMCs)
- · Can be used to study the CR spectra

gamma-ray observations (GeV)

Gas (CO) distribution

Derived CR spectrum

In comparison with the Local Measured CR: consistent above 10 GeV (solar modulation)

uniform or not?

gamma residual (CR density)

Test the uniformity of CRs

• Some hint of inhomogeneous distribution in Taurus-Perseus region

Dust opacity (gas distribution)

Uniform or not?

Test the uniformity of CRs

• Low energy CRs cannot penetrate into the core: slower diffusion due to higher turbulence inside GMCs?

Diffuse gamma-ray emission

Gamma-ray counts map

Point source contribution

Dust opacity map (gas column)

and the second second

CR Radial distributions

Cylindrical Symmetry assumed!

Hardening towards GC

More GMCs!

- Rice et.al (2016) have identified thousands of Molecular Clouds in the Galaxy
- Possible to measure CR density in each position of the Galaxy.

Aharonian et.al 2019

radial distribution of CR density and indices

Aharonian et.al 2019

- The enhancement and hardening is caused due to the CR sources?
- A uniform CR "sea" plus some "islands" with higher density and harder spectra?

Further test

- use HII gas to trace massive star forming regions (potential CR sources)
- Diffuse gamma can be separated into two components
- One associated with total gas column (dust opacity), with soft spectra. CR "sea"?
- Another with HII gas, with harder spectrum, CR "islands" near sources?

Further test

- use HII gas to trace massive star forming regions (potential CR sources)
- Diffuse gamma can be separated into two components
- One associated with total gas column (dust opacity), with soft spectra. CR "sea"?
- Another with HII gas, with harder spectrum, CR "islands" near sources?

(Yang, Liu and Aharonian 2020 in prep)

Low energy (LE) CRs

- E < 100 MeV, No pion-decay gamma-rays
- significant contribution to the energy density of ISM (~ eV/cm^3)
- Heating the gas
- Govern the astro-chemistry
- dominate ionization in MCs
- At MeV energy ionization dominate cooling
- Voyager measurement in ISM (Cummings et.al 2016)

LECRs: Ionization

- CR dominates ionization inside MC cores (UV shielded)
- The measured Ionization rates from astro-chemistry are larger than expected

Calculation from Phan et.al 2018, Black curve is the ionization rate assuming voyager measurement is the universal LECR spectrum

LE CR propagation

- But is the LECR spectrum universal?
- For LECR ionization cooling (see below) is significant in MeV range and the propagation is slow

LECR propagation

 LECR should be similar to VHE electrons, cannot propagate far Flux can be very different at different distances to the source

Gamma-ray line

- The same CRs can be studied also in gamma-rays through deexcitation line of nuclei
- Well studied in solar flare (Kozlovsky et.al 2002)

Gamma-ray line

Inverse and direct process

Use line ratio to diagnose CR spectrum

Use line ratio to diagnose CR spectrum

MeV gamma-ray, "LAST" electromagnetic window and interesting physics

Why SNRs?

- Energy budget reasonable: 1e40 erg/s considering 10% efficiency
- Acceleration: 1st order Fermi acceleration in the shock front
- Observation proofs

PeVatrons

(Yang, Liu and Aharonian 2020 in prep)

Cosmic Ray Spectra of Various Experiments

Knee: GCR at least to PeV

SNRs as CR source?

Mid-age SNRs

- Clear Pion-decay feature.
- Hadronic origin or Bremsstrahlung ?
- Break at ~ 10 GeV
- Cannot account for all CRs up to PeV

Fermi Collaboration 2013

Gamma-ray observation of Young SNRs

 All gamma-ray spectrum of young SNRs shows soft spectrum or early cutoff at ~ 10 TeV

中国科学技术大学

University of Science and Technology of China

- corresponding to CR energy of 100 TeV
- Hard to address a single power law spectrum of CRs up to PeV

Very young SNRs?

- PeVatron phase could be accomplished only during the first years of the explosion (e.g., Bell et.al 2013)
- The youngest SNR in the Galaxy: G1.9+0.3, t ~ 100 yr
- VHE protons cannot propagate more than 30 pc.
- HESS reveals L(>1 TeV) < 1e32 erg/ s can be used to set limit on proton energy budget.
- Considering a high density in the vicinity (near GC), the total energy on VHE protons are below 1e45 erg. Not enough to account for the CR flux up to the knee.

- Isotope measurement favor a superbubble origin. (W.R Binns 2016)
- Most of OB stars exist in associations or clusters, stellar wind can accelerate CRs (Cesarsky & Montmerle 83).
- Efficiency may even better than SNR (high speed wind lasts much longer than SNR shock)
- Sufficient wind power (10³⁸ 10³⁹ erg/s for each cluster, more than -10⁴¹ erg/s in the Galaxy) to account for CRs

CR Radial distributions

Alternative sources: Young massive clusters

Cygnus Cocoon 30 Doradus C (Fermi Collaboration 2012) (H.E.S.S Collaboration 2015) (H

Westerlund 1 (H.E.S.S Collaboration 2011)

Source population

Cygnus Cocoon

- More: NGC3603 (Yang & Aharonian 2017), Westerlund 2 (Yang et.al 2018), W43 (Yang & Wang 2020), W40 (Sun et.al 2020) RSGC 1 (Sun et.al 2020)... and more to be discovered and investigated
- All reveal extended gamma-ray emission and hard (2.3 type) gamma-ray spectra

Radial distribution of Cosmic Rays

- CR distribution derived by gamma-ray profile and gas distributions
- All four sources (Wd1, Wd2, Cygnus cocoon, GC) show 1/r distribution of CRs
- In diffusion, 1/r profile implies a continuous injection (in the lifetime of clusters)

Massive star clusters

Prospect

PeVatron searching

- Hard gamma-ray spectrum without cutoff can hardly be addressed in leptonic model (cooling and KN effects).
- no-cutoff in the gamma-ray spectrum up to 25 TeV
 => no-cutoff in the parent proton spectrum up to ~ 1
 PeV.
- Size of these sources also against leptonic scenario

PeVatron searching

• Large High Altitude Air ShowerObservatory

• KM2A: 1 km² scintillator (ED) and muon detector (MD) array, focus on the ultra high energy gamma-rays (>50 TeV)

• WCDA: Water Cherenkov detector arrays, mainly for TeV gamma-rays

• WFCTA: wide field of view Cherenkov telescope array, measure the shower shape, mainly for the direct measurement of Cosmic rays.

LHAASO sensitivities

LHAASO sensitivity for SNRs

Cassionpeia A

Preliminary plan:

32 Cerenkov telescopes

inside LHAASO site

CCTA Sensitivity

3-times more sensitive than CTA north (under construction) above 10 TeV order of magnitude better than the running instruments (H.E.S.S, MAGIC, Veritas)

Concluding Remarks

- CR distributions from the gamma-ray: origin and propagation
- Low energy end: interplay with the star forming/astrochemistry, nuclear line may open a new window.
- High energy end : PeVatron searching, LHAASO will play a leading role.

Thanks!