Novel views on planet formation and dust evolution

Connecting protoplanetary disk demographics with exoplanets, debris disks and exoplanet atmospheres

Nienke van der Marel

Leiden Observatory DoA Tsinghua Colloquium September 30th 2021

http://exoplanet.eu

http://exoplanet.eu

Star and planet formation

ALMA disk observations

Typical resolution ~0.1"

Enormous diversity of large-scale disk structures: origin?

ALMA et al. 2015; Andrews et al. 2016, 2018; Boehler et al. 2017, Cazzoletti et al. 2018; Dong et al. 2018; Fedele et al. 2017; Isella et al. 2016; Perez et al. 2019; Van der Marel et al. 2013, 2016a & 2020

Dust evolution

- Gas disk has a pressure gradient $\frac{dp}{dr}$ <
 - Radial inward drift dust
- Large particles move towards high pressure

=> Need pressure bump to prevent radial drift

Dust trapping

-40

-40

-20

X(AU)

Varniere et al 2007 Pinilla et al. 2012 Zhu et al. 2012

Barge & Sommeria 1995 Klahr & Henning 1997 Birnstiel et al. 2013

40

20

2/2

1.0

0.5

0.0

Dust trapping

1.3mm (ALMA) ¹³CO (ALMA) NIR (SPHERE)

Radial trapping

Segregation of mm-dust and gas/small grains shows trapping!

Azimuthal trapping

Pinilla et al. 2016 Van der Marel et al. 2013, 2016a Dong, van der Marel, et al. 2017

0.5mm (ALMA)

¹³CO (ALMA)

MIR (VISIR)

Signatures of protoplanets in gaps

Deep gas gaps in ¹³CO

High contrast imaging: PDS70

Spiral arms in NIR

Kinks in ¹²CO channel maps

Van der Marel et al. 2016,2021 Keppler et al. 2018 Haffert et al. 2019 Stolker et al. 2016 Benisty et al. 2017 Pinte et al. 2018

Mostly indirect: detection protoplanets is hard!

Rings everywhere!

			AATau	AB AUF	CQ Tau CS Cha	DM Tau
	#L#	May sop	$\langle \odot \rangle$	· · · · •	o o	0
		HLTau Elias24	GY91	A5209 GM AUT	(HD100453) (HD100546	
			•	0	00	S.
30.411	HV Lap	C KS O KS Sz96 RXJ1615	o M4 AATau	0 K3 V10945c0 IDEE52873	HD97048 HP Cha	PTau
			0 K7	о к		
		DMTau V12470ri	HD97048	HD163296	MHO2 MWC758	PD570
	0		0 A0	O 41 3XJ11352	O	5821
		HD100546 TWHya	HD169142	HD1353448		୍ତ୍
Quadrication Internal Quadrication Internal	Tim 20	• B9 () M1	0 A5	o F4 1000	TW Hya UX Tau A	V1247 (07)
	51%+C 180 RY	Tau DL Tau CI Du	UZ TAN B	FT Tau	0 -	1.
	50 AU .	50 AU	. <u>50 A</u> U	● <u>90 AU</u>		
•	DN Tre JQ 1	SU AU	DS Tas	IP Ten	Andrews e	et al. 2018 et al. 2018
	• • •		• -	•	Van der Marel e	et al. 201

Francis & van der Marel 2020

Are all gaps caused by planets?

GPIES: Jovian planets (on wide orbits) are rare, only few %!

Problem: strong bias towards the brightest disks in high-res observations!

What is the bigger picture?

Lupus ALMA Disks Survey

- Snapshot surveys of 1-2 min/source
- Hundreds of disks in SF regions
- Regions of 1-10 Myr old
- Continuum flux provides disk dust mass

=> Statistics of disk dust mass and evolution!

Ansdell et al. 2016, 2018 Barenfeld et al. 2016 Cieza et al. 2018

Upper Sco

Disk evolution

 $\frac{F_{\nu}d^2}{\kappa_{\nu}B_{\nu}(T_{\rm dust})}$ $M_{\rm dust} =$

Disk dust mass decreases with age

Ansdell et al. 2016, 2017 Cieza et al. 2018

Disk evolution

Disk dust mass scales with stellar mass and decrease with age is stronger for low-mass

Ansdell et al. 2016, 2017

Disk evolution

Infrared/accretion disk lifetime ~ 2-3 Myr

Mamajek 2009 Fedele et al. 2010

Large scatter in M_{acc}-M_{dust}: not tracing the same process?

Mulders et al. 2017 Manara et al. 2020

Disk evolution: dust size

Disk dust size scales with dust mass and decreases with time: radial drift?

Hendler et al. 2020 Andrews et al. 2018

Dust evolution: 2 options

Pinilla et al. 2012, 2020

Gap depth different planet masses (in M_{Earth})

Rosotti et al. 2016 Sinclair et al. 2020

Lupus (2 Myr)

Upper Sco (10 Myr)

Lupus (2 Myr)

Upper Sco (10 Myr)

Massive outliers: gapped disks => no drift

...

•

6334-0142

۰

۰

۲

۰

۲

.

683403-340

•

•

۰

163(03-3428)

. •

82709-2348

•

Ansdell et al. 2021

So how many disks are actually drift dominated or trap dominated?

Disk survey across all regions

<u>Sample</u>

- 12 low-mass star forming regions (<300 pc)
- Ages 1-10 Myr
- 700 disks (Class II)
- Spectral types A0 M6
- ALMA survey disk observations ~ 0.2-0.3" resolution + high-res for fraction of sample
- Measure M_{dust}, morphology and R_{dust}

Classification

Transition disks with wide cavities, e.g. J1604-2130

Ring disks with narrow gaps, e.g. HD163296

Compact and no gaps e.g. CX Tau (Facchini+2019)

Disk survey across all regions

Several dust disks no resolved structure, but Extended (>40 au): => likely gaps present because of dust evolution argument!

Disk survey across all regions

Distribution dust masses as function of age and disk type

Two separate evolutionary pathways: the structured disks and compact disks (drift!)

Also: separate dissipation routes

 M_{acc} - M_{dust} scatter can be explained with viscous disk model including dust evolution and alpha ~ 10⁻³

Sellek et al. 2020

Separate dissipation routes

Separate dissipation routes

Update infrared disk lifetime:

- Remove UV-dominated clusters (see Winter+2018 on external photoevaporation)
- Compute disk fraction with Gaia DR2 membership studies
- Fit with free power-law

For well-studied disks (with M_{dust}, M_{acc}), **IR disk lifetime is <u>7-8 Myr</u>, not 3 Myr!**

Michel, van der Marel & Matthews, in press

Separate dissipation routes

Michel, van der Marel & Matthews, in press

Cold debris disks

Debris disks less common around later type stars

Thureau et al. 2014 Sibthorpe et al. 2018

Recall: mm-dust evolution

Two separate evolutionary pathways: the structured disks and compact disks (drift!)

Which planets form in which disks?

Transition disks with deep, wide cavities, e.g. J1604-2130

Ring disks with narrow gaps, e.g. HD163296

Compact and no gaps e.g. CX Tau (Facchini+2019)

Planet mass (MEarth)

>1000 vdMarel+2016,2021

1-20

How to link with exoplanet demographics?

How to link with exoplanet demographics? **Gas giant locations** 10² 10¹ Planet mass (M_{Jup} 100 Migration 10^{-1} Neptune Jranus 10-2 Transit Earth Radial velocity 10-3 Direct imaging Microlensing Other Mercury 10^{-4} 10¹ 10-2 100 10³ 10^{-1} 10² Semi-major axis (au) Problem: exoplanets at wide orbits are rare: inward migration

How to link with exoplanet demographics?

How to link with exoplanet demographics?

Giant planet occurrence increases with stellar mass

(after correction for detection biases)

Johnson et al. 2010 Fernandes et al. 2019 Fulton et al. 2021

Disk demographics

Stellar mass dependence of disks

Gapped disks are more common around more massive stars

Disk demographics

Gapped disk occurrence is correlated with stellar mass

Disk demographics: giant planets

Match: disk gaps can be linked to giant planets (when there is migration)!

=> also link to debris disks!

Mayor et al. 2011 Fernandes et al. 2019 van der Marel & Mulders 2021

Exoplanet demographics: super-Earths

Super-Earth occurrence decreases with stellar mass

Mulders et al. 2015, 2018, 2019

Disk demographics: super-Earths

Disks $0.1-0.5 M_{\odot}$ $0.5-1.0 M_{\odot}$ $1.0-1.5 M_{\odot}$ $>1.5 M_{\odot}$ $0.1-0.5 M_{\odot}$ $0.5-1.0 M_{\odot}$ $1.0-1.5 M_{\odot}$ $>1.5 M_{\odot}$ $0.1-0.5 M_{\odot}$ $0.5-1.0 M_{\odot}$ $1.0-1.5 M_{\odot}$ $1.5 M_{\odot}$ $0.1-0.5 M_{\odot}$ $0.5-1.0 M_{\odot}$ $0.5-1.0 M_{\odot}$ $1.0-1.5 M_{\odot}$ $0.1-0.5 M_{\odot}$ $0.5-1.0 M_{\odot}$ $0.5-1.0 M_{\odot}$ $0.5-1.0 M_{\odot}$ $0.1-0.5 M_{\odot}$ $0.5-1.0 M_{\odot$

Close-in super-Earths ('Kepler planets')

Match: compact disks can be linked to super-Earths: increased pebble flux

Moe & Kratter 2019 Lambrechts et al. 2019 van der Marel & Mulders 2021

How does planet formation affect disk evolution?

Explanation Solar System: no super-Earth

Issue: correlation between Super-Earths and cold Jupiters?

For Solar mass stars, correlation found between cold Jupiter and Super-Earth presence

Zhu & Wu 2018 Herman et al. 2019

Consequence: giant planet formation must be early?

Disks of 0.5-1 Myr have gaps

What do core accretion and gravitational instability models predict in embedded disk conditions?

Embedded disks have 50x more dust mass

> Segura-Cox et al. 2020 Tychoniec et al. 2020

Consequence: dust traps follow migration inwards?

Consequence: compact disks have no gaps?

Dust transport regulates ice chemistry?

COMs and evidence for C/O < 1 in IRS 48 dust trap!

Van der Marel et al. 2021b Booth et al. 2021b

Why do we care about C/O?

Classical picture of C/O in disk: snowlines

Oberg et al. 2011

Dust transport regulate (ice) chemistry?

Oberg et al. 2016 Booth & llee 2019 Krijt et al. 2020

C₂H observations: measure of C/O

Miotello et al. 2019 Bergner et al. 2019

Link with continuum substructure?

Van der Marel et al. 2021c

Dust transport regulates (ice) chemistry?

Consequence: material accreted onto planet depends on snowlines AND dust transport

Van der Marel et al. 2021c

Summary

- There may be **two evolutionary pathways** for structured and compact disks, set by the presence/absence of pressure bumps
- **Decoupling mm-dust evolution** from gas/micron-dust evolution helps to understand the disk evolution process.
- Disk lifetimes of micron-dust may be as long as 8 Myr when excluding UVdominated regions
- Structured disks show a stellar-mass dependence
- Under the assumption of migration, there are sufficient giant exoplanets to explain the number of gapped disks
- Super-Earths occurrence rates match those of compact disks, suggesting they are related.
- Structured disks are likely progenitors of **debris disks**
- Dust transport has a profound effect on the **chemistry in disks**
- The C/O ratio of exoplanet atmospheres may be set by the interplay of snowlines and pressure bumps

Questions?