Cosmology with spectroscopic surveys

Cheng ZHAO (赵成)

National Astronomical Observatories, Chinese Academy of Science

Nov 17, 2022

Department of Astronomy (DoA) Colloquium, Tsinghua University

Standard cosmological framework

Expanding universe

Standard cosmological framework

$$H(a) = H_0^2 \left(\Omega_{\rm r} a^{-4} + \Omega_{\rm m} a^{-3} + \Omega_k a^{-2} + \Omega_\Lambda \right)$$

geometry

Dark Universe

Dark Universe

Cosmic tug of war

The force of dark energy surpasses that of dark matter as time progresses.

Inhomogeneity /

clustering

Baryon Acoustic Oscillations

Standard ruler for expansion history

Redshift-Space Distortions

Measurement of structure growth

Matter power spectrum

Massive spectroscopic surveys

Credit: SDSS, DESI

Massive spectroscopic surveys

Photometric survey

- CLegacy Surveys DR9-SV images C Legacy Surveys DR9-SV models Legacy Surveys DR9-SV residuals Legacy Surveys DR9-SV-north images Legacy Surveys DR9-SV-south images Legacy Surveys DR8 images Legacy Surveys DR8 models Legacy Surveys DR8 residuals Legacy Surveys DR8-north images +(Legacy Surveys DR8-south images Legacy Surveys DR6+DR7 images **DECaLS DR7** images + MzLS+BASS DR6 images +DECaLS DR5 images **DECaPS** images unWISE W1/W2 NEO4 unWISE Catalog Model More surveys SDSS images DES DR1 HSC DR2 images VLASS images GALEX WISE 12-micron dust map SFD dust map Halpha map Legacy Surveys Bricks + CLegacy Surveys DR9-SV CCDs Legacy Surveys DR8 CCDs

+ DECaLS DR7 CCDs

Tips & Tricks | Leaflet | Source | Legacy Survey @ NOAO/AL

SDSS CCDs

Target selection

Target selection: eBOSS ELG

- Selection criteria
 - Star-forming \rightarrow « blue » cut in g–r
 - Balmer break → « red » cut in r–z
 - $[O_{II}]$ flux correlates with g-mag \rightarrow « bright » cut in g-mag
- Target density: ~ 230 deg⁻²

Tiling

Distributing targets to plates (eBOSS)

- LRG (Oct. 2014 Feb. 2019)
 - 1020 plates, ~ 260 targets per plate
- ELG (Sep. 2016 Feb. 2018)
 - 305 plates, ~ 820 ELG targets per plate
 - 4 chunks (independent of tiling)
- QSO (Jul. 2014 Feb. 2019)
 - 1020 plates, ~ 520 QSO targets per plate

Spectrograph

DESI spectrograph schematic

DESI 2016

Multi-fibre image

Credit: Paul Martini's slides

- ELG at z=1.619 (976nm, limit ~980nm)
- Sufficient resolution to resolve the doublet for robust redshift

SDSS tracers

Credit: Anand Raichoor

Systematics

Imaging systematics

- Angular photometric systematics (linear regression)
 - Galaxy extinction
 - Stellar density
 - Depth and seeing
 - Others
- Depth-dependent redshift density (eBOSS ELG)
 - significant imaging depth inhomogeneities

Systematics

Spectroscopic systematics

- Fibre collision
 - Physical size of fibres
- Redshift failure
 - Position on the focal plane
 - Fibre ID / CCD pixel
 - Observational conditions (signal-to-noise ratio of spectra)
- Redshift error

0.2

0.4

0.6

plate SN

1.0

8.0 SSR 0.6

0.4 blate

<

0.0

-0.1

0.0

Line confusion

Credit: A. Raichoor

000

0.8

Matter power spectrum

SDSS final results

eBOSS 2021

Standard clustering analysis

Approximate mocks

Fast mock generation

Perturbation theories / less time steps

Neyrinck+ 2013

Chuang, **CZ**+ 2015

Fast mock: EZmock

Survey geometry & redshift evolution

Imaging systematics

EZmock: density map

eBOSS multi-tracer mocks

EZmock clustering

Beyond standard analysis: voids

Space dimension

DT "voids"

Visualisation

Cosmology independent ~10 minutes for 5.5 million haloes with one CPU core Complexity: N log(N)

CZ+ 2016

First void BAO detection

BOSS DR11 data

Kitaura, ..., CZ+ 2016

Sensitivity to systematics

Constant radius cut insensitive to moderate systematics

Forero-Sanchez, **CZ**+ 2022

Distance measurements

Distance measurements

Cosmology with galaxy+void

Measurements with the state-of-art (DESI) data

- Caveat: systematics!
- Multi-probe & multi-tracer constraints
- Beyond standard methods

Measurements with the state-of-art (DESI) data

- Caveat: systematics!
- Multi-probe & multi-tracer constraints
- Beyond standard methods

- Measurements with the state-of-art (DESI) data
- Multi-probe & multi-tracer constraints
 - Mitigate systematics
 - Suppress variances

Beyond standard methods

- Measurements with the state-of-art (DESI) data
- Multi-probe & multi-tracer constraints
- Beyond standard methods
 - 3-point and higher order
 - Full shape

- Measurements with the state-of-art (DESI) data
- Multi-probe & multi-tracer constraints
- Beyond standard methods

And NEW survey!

Matter power spectrum

Future survey forecast

d'Assignies, **CZ**+ in prep.

Future survey forecast

d'Assignies, **CZ**+ in prep.

Summary

- Massive spectroscopic surveys are crucial for our understanding of the Universe
 - BAO: cosmic expansion history (dark energy)
 - RSD: structure growth history (gravity)
- EZmock: multi-tracer massive production of fast mocks
- DT void: galaxy + void present better constraint on dark energy
- Systematics may be dominant for non-standard analysis and future data
- Future survey forecasts for different purposes:
 - Primordial non-Gaussianity (quantum gravity?)
 - Nature of dark matter