The age of discovery with JWST: excavating the first massive BHs & galaxies

Kohei Inayoshi (稲吉恒平) KIAA/PKU

15th September 2022 @Tsinghua, DoA

Talk's outline

- 1. Introduction
- 2. Rapid Growth of BHs
- 3. Excavating the First Massive BHs

1. Introduction

Black Holes (BHs)

The theory of general relativity predicts that a sufficiently compact mass can deform spacetime to form <u>a black hole, where gravity is</u> <u>so strong that nothing (even lights!) can escape from it.</u>

Supermassive black holes (SMBH)

$M \sim 10^{6-10} M_{sun}$

https://en.wikipedia.org/wiki/Messier_87

powerful engine!

https://en.wikipedia.org/wiki/Quasar#

universal existence in galaxies

Artist's illustration of a supermassive black hole. Credit: NASA/JPL/CALTECH

Early BH-galaxy coevolution

Black Hole mass

Galaxy mass

History of the universe

High-z SMBH population

Early BH-galaxy coevolution

Co-evolution diagram

2. Rapid Growth of BHs

Rapid SMBH assembly

Formation channels of early BHs

Various masses of seed BHs depending on SF environments

KI, Visbal & Haiman (2020) ARA&A

BH mass function in QSO host galaxies

RHD simulations + semi-analytical model for BH seeding (Li et al. 2021; Toyouchi et al. 2022; see also Sassano et al. 2021)

The most efficient cosmic engine

 $L \simeq \frac{GM_{\bullet}}{R_{\text{in}}} \dot{M} = \eta \dot{M}c^2$ $(\eta \sim 0.1)$

BH feedback (output)

• $\phi \propto r^{-1}$

 $R_{\rm in} \sim \frac{2GM_{\bullet}}{c^2}$

BH feeding (input)

Eddington limit

suppose a spherically symmetric system

we would naively impose $g_{\text{grav}} \gtrsim g_{\text{rad}}$ "Eddington luminosity"

$$L \lesssim \frac{4\pi c G M_{\bullet}}{\kappa_{\rm e}} \equiv L_{\rm Edd} \simeq 1.3 \times 10^{46} \text{ erg s}^{-1} \left(\frac{M_{\bullet}}{10^8 M_{\odot}}\right)$$

Eddington limit

Eddington limited accretion

$$\dot{M} = \frac{L}{\eta c^2} \lesssim \frac{L_{\rm Edd}}{\eta c^2} \equiv \dot{M}_{\rm Edd} \simeq 2.3 \ M_{\odot} \ {\rm yr}^{-1} \left(\frac{M_{\bullet}}{10^8 \ M_{\odot}} \right)$$
$$\dot{M} \propto M \ (\text{exponential growth})$$

solution

$$M = M_0 \ e^{t/t_{\rm Edd}}$$
 where $t_{\rm Edd} \simeq 45 \ {
m Myr}$
~ $5 \times 10^7 \ M_0$ ($t \simeq 800 \ {
m Myr}$ at z~7)

SMBHs can form from >10M_{sun} seed BHs via 'continuous' Eddington accretion

Galaxy environments

overdense (>4σ) rare regions (progenitors of quasar hosts)

common (~2σ) regions (typical protogalaxies)

BH accretion in typical first galaxies

Feedback regulated case (M_{halo} = 10⁷ M_{sun}; z=10; 2σ)

episodic accretion (radiation heating)

BH accretion in massive first galaxies

• Rapid growing case ($M_{halo} = 10^9 M_{sun}$; z=15; 4 σ)

KI, Haiman & Ostriker (2016) Takeo, KI et al. (2018,2019,2020) Toyouchi, KI et al. (2021)

Early BH-galaxy coevolution

Early BH-galaxy coevolution

Rapid BH accretion makes them "overmassive and bright"

3. Excavating the First Massive BHs

James Webb Space Telescope

JWST sensitivity

JWST for hunting seed BHs

Observed wavelength **1.98µm** [(1+z)/16] Rest-frame ~ 10eV (0.124µm)

> JWST cycle 1 approved PI: M.Onoue

How to find seed BHs from images?

galaxies

quasars/ seed BHs?

Credits: NASA, ESA, CSA, and STScI

Spectra for fast growing seed BHs

Color-cut conditions to hunt for seed BHs

Color-cut conditions to hunt for seed BHs

The first AGN candidate in JWST

• CEERS-AGN-z5-1 (L_{bol} ~ 10⁴⁴ erg/s, L_{Hβ+[OIII]} ~ L_{Hα}~ 10⁴³ erg/s)

The first AGN candidate in JWST

· CEERS-AGN-z5-1 (1 $0^{44} \text{ erg/s}, L_{H\beta+[OIII]} \sim L_{H\alpha} \sim 10^{43} \text{ erg/s})$ μ (b) QSO, SDSS composite 10⊧ $z_{\text{phot}}=4.97, \chi_v^2=1.7$ 0.43 5 Wavelength [µm] Flux Density [µJy] (d) Super-Eddington BH 10 $z_{\text{phot}} = 5.12, \chi_v^2 = 1.3$ 0.1 0.01 0.43 0.55 Wavelength [µm] Onoµe, KI, Ding et al. (2022) Ľ

The least massive BH candidates

Onoue, KI, Ding et al. (2022)

Summary

- The existence of high-z SMBHs requires their quick assembly mechanisms (massive seed formation, rapid accretion)
- Rapid accretion onto seed BHs in massive DM halos naturally explains the existence of "overmassive" BHs
- Future observations by JWST and RST will enable us to detect transient bursts (the first cry) of seed BHs

Thank you! 谢谢!