系外行星与行星形成

  首页/系外行星与行星形成

近十多年来,天文学家已在太阳系外发现了4,000多个行星,这些激动人心的发现令系外行星科学成为天体物理中发展最迅速的领域之一。近年来以及不远的将来,随着众多先进的观测设备的启用以及理论和计算工具的革新,我们这一代天文学家终于有望回答困扰人类数百年的一系列根本性问题:行星在其它恒星周围也是普遍存在的吗?太阳系的结构有普适性吗?地球以外有宜居行星吗?驱动行星形成的基本物理原理是什么?在我们太阳系以及系外行星系统中的诸多行星为何各有不同?我们能否找到生命起源的踪迹?在清华,我们的团队正通过多种研究途径来来回答这些问题。在观测方面,我们利用精确视线速度方法、微引力透镜方法和凌星法等多种方法来探测系外行星,并对系外行星的发现开展统计分析。在理论方面,我们对原行星盘-行星的诞生地-利用高性能计算机开展数值模拟,同时我们开发的理论模型涵盖了行星形成在各尺度的机制和物理。


1. 系外行星搜寻与刻画

在清华,我们的观测团队主要通过三种重要的方式搜寻系外行星,并刻画它们的性质。一是微引力透镜法,即通过光线在引力场中的弯曲和放大效应来探测包括系外行星在内的天体。该方法对探测冷行星(即轨道半径较大)特别敏感,与其它方法互补,对限制行星形成的理论有重要意义。我们积极参与国际领先的微透镜巡天计划(例如KMTNet以及Las Cumbres望远镜网络),以及未来的空间卫星计划。二是视向速度(RV)法,即测量由于看不见的行星的引力引起的主星RV的变化,并由此推断行星质量。清华天文学家采用并改进了RV技术,并能够使用最先进的观测设施(如麦哲伦的行星搜寻光谱仪PFS和CFHT的SPIRou光谱仪), 使探测测邻近类太阳恒星周围的类地球行星成为可能。三是凌星法,即通过恒星亮度因在视线上的行星的遮掩而呈现周期性的变暗来探测行星,并由此确定其大小。我们正在使用TESS卫星和Las Cumbres天文台等望远镜开展探测,并可进一步利用RV方法来测量行星质量并约束行星内部结构和大气模型。结合这些手段,我们将不断拓展行星探测的参数空间,发现更多独特的,特别是类似太阳系的行星系统。


联系人: 王雪凇毛淑德祝伟
2. 行星系统的构型

很多系外行星系统拥有多颗性质完全不同的行星,正如我们的太阳系,有距离主星很近的岩石行星和距离主星较远的气态巨行星。绕同一个主星运动的多颗行星的早期形成和后期演化也很可能是相互关联的。因此,行星系统的构型,也就是一个系统内部的行星的个数和性质(如质量,大小,轨道特性等),可以为我们了解行星系统的形成和演化提供重要线索。然而,由于不同的探测手段通常更容易探测到某些特定类型的行星,我们直接探测到的行星和行星系统的分布情况并不反映这些系统本身的真实分布。清华的天文学家应用先进的数据挖掘和统计方法到大样本的数据中,并将不同探测手段得到的数据进行有机组合,来揭示行星系统内禀的构型,其结果将对行星形成理论提供很强的限制。特别地,我们希望了解类似太阳系的行星系统的普遍性,也就是从科学的角度回答一个古老且永恒的哲学问题:我们在宇宙中是不是孤独的?


联系人: 祝伟Chris Ormel
3. 行星形成理论

行星形成理论研究原行星盘中的尘埃和气体如何组装并最终形成我们今天所见的行星系统。在小尺度,由于表面作用力和空气阻力的作用,微米大小的尘埃颗粒通过碰撞并和或聚集塌缩生长成为更大的物体(毫米大小的石砾和千米级的星子)。在更大的尺度,引力促使它们进一步相互吸积和生长。研究行星形成需要对其背后的物理有透彻理解,包括碰撞物理,尘埃粒子的空气动力学,N体动力学,盘和行星中的热力学等等。在清华,我们开展的前沿研究涉及行星形成的诸多方面,譬如(但不限于)石砾粒子在盘中如何通过“穿流不稳定性”形成星子,行星胚胎如何通过石砾吸积快速生长,行星如何从盘中获得其原初大气,以及如何形成完整的行星系统结构。通过这些,我们的研究不仅针对行星作为独立个体的形成,更将行星形成模型同观测到的系外行星及其系统,也特别包括太阳系直接比较,帮助人们理解怎样的条件能够形成怎样的行星或行星系统。


联系人: Chris Ormel白雪宁
4. 原行星盘物理

原行星盘是围绕在新形成的原恒星周围的气体盘。在其几百万年的寿命里,行星在盘中孕育生长,而盘的物理对行星形成的几乎所有阶段均有关键性影响,特别是盘的结构(密度,温度,化学成分等),气流结构(吸积,湍流,外流等),以及它们随时间如何演化。近年来,以ALMA为代表的一系列观测设备通过其极高的空间分辨率和灵敏度,发现了盘中存在丰富的亚结构,革命性地改变了人们对盘的认识。这些源源不断的发现不断挑战人们对盘物理的理解,而对盘物理理解的欠缺也是当前研究行星形成的主要壁垒。在清华,我们主要通过理论和计算研究盘物理,其中涉及弱电离富含尘埃的气体中磁场,辐射,化学过程,以及潜在的新诞生的行星之间的各种相互作用。我们将使用并开发先进的计算工具,特别是通过高性能计算,研究一系列基础性问题,比如什么决定了盘的初始条件?什么驱动了盘在不同阶段不同区域的吸积和演化?盘如何自发形成各种亚结构?研究的结果将为理解行星形成和行星系统的多样性提供关键线索。


联系人: 白雪宁Chris Ormel